首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   3篇
  国内免费   1篇
废物处理   9篇
环保管理   22篇
综合类   12篇
基础理论   38篇
污染及防治   54篇
评价与监测   24篇
社会与环境   22篇
  2023年   3篇
  2022年   12篇
  2021年   9篇
  2020年   2篇
  2019年   4篇
  2018年   10篇
  2017年   11篇
  2016年   8篇
  2015年   3篇
  2014年   10篇
  2013年   11篇
  2012年   12篇
  2011年   7篇
  2010年   6篇
  2009年   7篇
  2008年   10篇
  2007年   9篇
  2006年   11篇
  2005年   5篇
  2004年   5篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1973年   1篇
  1962年   1篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
101.
102.

Water and soil pollution by toxic heavy metals (HMs) is increasing globally because of increase in population, industrialization and urbanization. It is a burning problem for the public, scientists, academicians and politicians how to tackle the toxic contaminants which jeopardize the environment. One possible solution for pollution abatement is a bioremediation-effective and innovative technology that uses biological systems for treatment of contaminants. Many bacteria synthesize indole-3-acetic acid (IAA) which is a product of l-tryptophan metabolism and belongs to the auxin class of plant growth-promoting hormone. The present study aimed at assessing the resistance pattern of wastewater bacteria against multiple HMs and plant growth promotion activity associated with IAA. A Gram-negative bacterial strain Pseudomonas aeruginosa KUJM was isolated from Kalyani Sewage Treatment Plant. This strain showed the potential to tolerate multiple contaminations such as As(III) (50 mM), As(V) (800 mM), Cd (8 mM), Co (18 mM), Cu (7 mM), Cr (2.5 mM), Ni (3 mM) and Zn (14 mM). The capability of IAA production at different tryptophan concentration (1, 2, 5 and 10 mg mL−1) was determined, and seed germination-enhancing potential was also estimated on lentil (Lens culinaris). Such type of HM-resistant, IAA-producing and seed germination-enhancing P. aeruginosa KUJM offer great promise as inoculants to promote plant growth in the presence of toxic HMs, as well as plant inoculant systems useful for phytoremediation of polluted soils. Hence, P. aeruginosa KUJM finds significant applications in HM-contaminated poor agricultural field as well as in bioremediation of HM-contaminated wastewater system.

  相似文献   
103.
This study was performed to elucidate the distribution, concentration trend and possible sources of total mercury (Hg(T)) and methylmercury (MeHg) in sediment cores (<63 μm particle size; n?=?75) of Sundarban mangrove wetland, northeastern part of the Bay of Bengal, India. Total mercury was determined by atomic absorption spectrometry (AAS) in a Leco AMA 254 instrument and MeHg by gas chromatography-atomic fluorescence spectrometry (GC-AFS). A wide range of variation in Hg(T) (0.032-0.196 μg g(-1) dry wt.) as well as MeHg (0.04-0.13 ng g(-1) dry wt.) concentrations revealed a slight local contamination. The prevalent low Hg(T) levels in sediments could be explained by sediment transport by the tidal Hugli (Ganges) River that would dilute the Hg(T) values via sediment mixing processes. A broader variation of MeHg proportions (%) were also observed in samples suggesting that other environmental variables such as organic carbon and microbial activity may play a major role in the methylation process. An overall elevated concentration of Hg(T) in surface layers (0-4 cm) of the core is due to remobilization of mercury from deeper sediments. Based on the index of geoaccumulation (I (geo)) and low effects-range (ER-L) values, it is considered that the sediment is less polluted by Hg(T) and there is less ecotoxicological risk. The paper provides the first information of MeHg in sediments from this wetland environment and the authors strongly recommend further examination of Hg(T) fluxes for the development of a detailed coastal MeHg model. This could provide more refine estimates of a total flux into the water column.  相似文献   
104.
The study deals with the combined contribution of polycyclic aromatic hydrocarbons (PAHs) and metals to health risk in Delhi soils. Surface soils (0–5 cm) collected from three different land-use regions (industrial, flood-plain and a reference site) in Delhi, India over a period of 1 year were characterized with respect to 16 US Environmental Protection Agency priority PAHs and five trace metals (Zn, Fe, Ni, Cr and Cd). Mean annual ∑16PAH concentrations at the industrial and flood-plain sites (10,893.2?±?2826.4 and 3075.4?±?948.7 μg/kg, respectively) were ~15 and ~4 times, respectively, higher than reference levels. Significant spatial and seasonal variations were observed for PAHs. Toxicity potentials of industrial and flood-plain soils were ~88 and ~8 times higher than reference levels. Trace metal concentrations in soils also showed marked dependencies on nearness to sources and seasonal effects. Correlation analysis, PAH diagnostic ratios and principal component analysis (PCA) led to the identification of sources such as coal and wood combustion, vehicular and industrial emissions, and atmospheric transport. Metal enrichment in soil and the degree of soil contamination were investigated using enrichment factors and index of geoaccumulation, respectively. Health risk assessment (incremental lifetime cancer risk and hazard index) showed that floodplain soils have potential high risk due to PAHs while industrial soils have potential risks due to both PAHs and Cr.  相似文献   
105.
Transfer factors are the most important parameters required for mathematical modeling used for environmental impact assessment of radioactive contamination in the environment. In this paper soil to leaf transfer factor for the radionuclides 40K, 226Ra, 137Cs and 90Sr is estimated for Kaiga region in Karnataka state, India. Among the plants in which study is carried out, 226Ra, 40K, 137Cs and 90Sr activity in leaves of herbaceous plants is higher than that of tree leaves. Soil to leaf transfer factor for 226Ra, 40K, 137Cs and 90Sr was found to be in the range of 0.03-0.65, 0.32-8.04, 0.05-3.03 and 0.42-2.67 respectively.  相似文献   
106.
Antimony sorption at gibbsite-water interface   总被引:3,自引:0,他引:3  
Antimony (Sb) is extensively used in flame retardants, lead-acid batteries, solder, cable coverings, ammunition, fireworks, ceramic and porcelain glazes and semiconductors. However, the geochemical fate of antimony (Sb) remained largely unexplored. Among the different Sb species, Sb (V) is the dominant form in the soil environment in a very wide redox range. Although earlier studies have examined the fate of Sb in the presence of iron oxides such as goethite and hematite, few studies till date reported the interaction of Sb (V) with gibbsite, a common soil Al-oxide mineral. The objective of this study was to understand the sorption behavior of Sb (V) on gibbsite as a function of various solution properties such as pH, ionic strength (I), and initial Sb concentrations, and to interpret the sorption-edge data using a surface complexation model. A batch sorption study with 20 g L−1 gibbsite was conducted using initial Sb concentrations range of 2.03-16.43 μM, pH values between 2 and 10, and ionic strengths (I) between 0.001 and 0.1 M. The results suggest that Sb (V) sorbs strongly to the gibbsite surface, possibly via inner-sphere type mechanism with the formation of a binuclear monodentate surface complex. Weak I effect was noticed in sorption-edge data or in the isotherm data at a low surface coverage. Sorption of Sb (V) on gibbsite was highest in the pH range of 2-4, and negligible at pH 10. Our results suggest that gibbsite will likely play an important role in immobilizing Sb (V) in the soil environment.  相似文献   
107.
Animal wastewater lagoons nearby concentrated animal feeding operations (CAFOs) represent the latest tendency in global animal farming, severely impacting the magnitude of greenhouse gas emissions, including nitrous oxide (N2O). We hypothesized that lagoon wastewater could be supersaturated with N2O as part of incomplete microbial nitrification/denitrification processes, thereby regulating the N2O partitioning in the gaseous phase. The objectives of this study were: (i) to investigate the magnitude of dissolved N2O concentrations in the lagoon; and (ii) to determine the extent to which supersaturation of N2O occurs in wastewater lagoons. Dissolved N2O concentrations in the wastewater samples were high, ranging from 0.4 to 40.5 μg N2O mL−1. Calculated dissolved N2O concentrations from the experimentally measured partition coefficients were much greater than those typically expected in aquatic systems (<∼0.6 μg N2O mL−1). Knowledge of the factors controlling the magnitude of N2O supersaturation could potentially bridge mass balance differences between in situ measurements and global N2O models.  相似文献   
108.
Concentrated animal feeding operations around the globe generate large amounts of nitrous oxide (N2O) in the surrounding atmosphere. Liquid animal waste systems have received little attention with respect to N2O emissions. We hypothesized that the solution chemistry of animal waste aqueous suspensions would promote conditions that lead to N2O supersaturation at the liquid/air interface. The concentration of dissolved N2O in poultry litter (PL) aqueous suspensions at 25 °C was 0.36 μg N2O mL−1, at least an order of magnitude greater than that measured in water in equilibrium with ambient air, suggesting N2O supersaturation. There was a nonlinear increase in the N2O Henry constants of PL from 2810 atm/mole fraction at 35 °C to 17 300 atm/mole fraction at 41 °C. The extremely high N2O Henry constants were partially ascribed to N2O complexation with aromatic moieties. Complexed N2O structures were unstable at temperatures > 35 °C, supplying the headspace with additional free N2O concentrations.  相似文献   
109.
Microbial siderophores and their potential applications: a review   总被引:1,自引:0,他引:1  
Siderophores are small organic molecules produced by microorganisms under iron-limiting conditions which enhance the uptake of iron to the microorganisms. In environment, the ferric form of iron is insoluble and inaccessible at physiological pH (7.35–7.40). Under this condition, microorganisms synthesize siderophores which have high affinity for ferric iron. These ferric iron-siderophore complexes are then transported to cytosol. In cytosol, the ferric iron gets reduced into ferrous iron and becomes accessible to microorganism. In recent times, siderophores have drawn much attention due to its potential roles in different fields. Siderophores have application in microbial ecology to enhance the growth of several unculturable microorganisms and can alter the microbial communities. In the field of agriculture, different types of siderophores promote the growth of several plant species and increase their yield by enhancing the Fe uptake to plants. Siderophores acts as a potential biocontrol agent against harmful phyto-pathogens and holds the ability to substitute hazardous pesticides. Heavy-metal-contaminated samples can be detoxified by applying siderophores, which explicate its role in bioremediation. Siderophores can detect the iron content in different environments, exhibiting its role as a biosensor. In the medical field, siderophore uses the “Trojan horse strategy” to form complexes with antibiotics and helps in the selective delivery of antibiotics to the antibiotic-resistant bacteria. Certain iron overload diseases for example sickle cell anemia can be treated with the help of siderophores. Other medical applications of siderophores include antimalarial activity, removal of transuranic elements from the body, and anticancer activity. The aim of this review is to discuss the important roles and applications of siderophores in different sectors including ecology, agriculture, bioremediation, biosensor, and medicine.  相似文献   
110.

Purpose

This study had an objective to identify the most potent chromium-resistant bacteria isolated from tannery effluent and apply them for bioremediation of chromium in tannery effluents.

Methods

Two such strains (previously characterized and identified by us)??Enterobacter aerogenes (NCBI GenBank USA Accession no. GU265554) and Acinetobacter sp. PD 12 (NCBI GenBank USA Accession no. GU084179)??showed powerful chromium resistivity and bioremediation capabilities among many stains isolated from tannery waste. Parameters such as pH, concentration of hexavalent chromium or Cr (VI), and inoculum volume were varied to observe optimum bioconversion and bioaccumulation of Cr (VI) when the said strains were grown in M9 minimal salt media. E. aerogenes was used to remediate chromium from tannery effluents in a laboratory level experiment.

Results

Observation by Scanning Electron Microscope and chromium peak in Energy Dispersive X-ray Spectroscopic microanalysis revealed that E. aerogenes helped remediate a moderate amount of Cr (VI) (8?C16?mg?L?1) over a wide range of pH values at 35?C37°C (within 26.05?h). High inoculum percentage of Acinetobacter sp. PD 12 also enabled bioremediation of 8?C16?mg?L?1 of Cr (VI) over a wide range of temperature (25?C37°C), mainly at pH?7 (within 63.28?h). The experiment with real tannery effluent gave very encouraging results.

Conclusion

The strain E. aerogenes can be used in bioremediation of Cr (VI) since it could work in actual environmental conditions with extraordinarily high capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号