首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   1篇
  国内免费   2篇
安全科学   3篇
废物处理   3篇
环保管理   13篇
综合类   7篇
基础理论   15篇
污染及防治   22篇
评价与监测   4篇
社会与环境   2篇
  2023年   2篇
  2022年   5篇
  2021年   5篇
  2019年   2篇
  2018年   3篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   4篇
  2012年   6篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2003年   2篇
  2001年   2篇
  1995年   2篇
  1992年   2篇
  1990年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1962年   1篇
  1961年   1篇
排序方式: 共有69条查询结果,搜索用时 46 毫秒
41.
Water Consumption in the Production of Ethanol and Petroleum Gasoline   总被引:1,自引:0,他引:1  
We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10–17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8–6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.  相似文献   
42.
Contaminant plumes (e.g., associated with leakages from municipal landfills) provide a source of natural electrical potentials (or "self-potentials") recordable at the Earth's surface. One contribution to these self-potentials is associated with pore water flow (i.e., the "streaming potential"), and the other is related to redox conditions. A contaminant plume can be regarded as a "geobattery": the source current potentially results from the degradation of the organic matter by micro-organisms, which produces electrons. These electrons are then carried by nanowires that connect bacteria and thorough metallic particles that precipitate in areas of strong redox potential gradient. In the case of the Entressen landfill (South of France), reported here, the hydraulic head differences measured in piezometers outside the contaminant plume is strongly linked to the surface self-potential signals, with a correlation coefficient of -0.94. We used a Bayesian method that combines hydraulic head and self-potential data collected outside the contaminated area to estimate the streaming potential component of the collected self-potential data. Once the streaming potential contribution was removed from the measured self-potentials, the correlation coefficient between the residual self-potentials and the measured redox potentials in the aquifer was 0.92. The slope of this regression curve was close to 0.5, which was fairly consistent with both finite element modelling and the proposed geobattery model.  相似文献   
43.
44.
ABSTRACT This study examined the feasibility of extending the Accelerated Salt Transport (ASTRAN) method of groud water quality control to a complex, closed basin which is experiencing ground water quality degradation from irrigated agriculture (e.g., the Tulare Lake Basin in the Southern portion of the California Central Valley). A linear programming model was constructed and parametric analysis conducted which produced results with a “general appraisal” (or “level B”) degree of accuracy. The study concluded that a drainage water export drain is required in order to implement a long-term solution but that ground water degradation can be mitigated by a combination of the ASTRAN method and other measures even with existing entitlements and legal constraints.  相似文献   
45.
In this article, a comparative study is presented for the transcritical cycle with expansion valve (TCEV) and transcritical cycle with vortex tube (TCVT) mainly based on the second law of thermodynamics. Natural refrigerant nitrous oxide (N2O) is used in both the cycles for analysis. The evaporator and gas cooler temperatures are varied from ?55°C to 5°C and 35°C to 60°C, respectively. The effects of various operating and design parameters on the optimum heat rejection pressure, coefficient of performance (COP), exergy loss (irreversibility), and the exergetic efficiency are studied. Exergy analysis of each component in TCEV and TCVT is performed to identify the amount and locations of irreversibility. It is observed that the use of the vortex tube in place of the expansion valve reduces the total exergy losses and increases the exergetic efficiency as well as COP. The exergetic efficiency and COP of the TCVT are on average 10–12% higher compared to TCEV for the considered operating conditions. The computed values of the exergetic efficiency for TCVT using refrigerant N2O are the highest at an evaporator temperature of ?55°C, and the corresponding values of exergetic efficiency and exergy losses varies between 25.35% and 15.67% and between 74.65% and 84.33%, respectively. However, COP at the same evaporator temperature of ?55°C varies between 0.83 and 0.51. Furthermore, the optimum heat rejection pressure in TCVT is lower compared to that in TCEV. The results offer significant help for the optimum design and operating conditions of TCVT with refrigerant N2O.  相似文献   
46.
Female philopatry in mammals is generally associated with ecological and sometimes social benefits, and often with dispersal by males. Previous studies on dispersal patterns of orangutans, largely non-gregarious Asian great apes, have yielded conflicting results. Based on 7?years of observational data and mitochondrial and nuclear DNA analyses on fecal samples of 41 adult Bornean orangutans (Pongo pygmaeus wurmbii) from the Tuanan population, we provide both genetic and behavioral evidence for male dispersal and female philopatry. Although maternally related adult female dyads showed similar home-range overlap as unrelated dyads, females spent much more time in association with known maternal relatives than with other females. While in association, offspring of maternally related females frequently engaged in social play, whereas mothers actively prevented this during encounters with unrelated mothers, suggesting that unrelated females may pose a threat to infants. Having trustworthy neighbors may therefore be a social benefit of philopatry that may be common among solitary mammals, thus reinforcing female philopatric tendencies in such species. The results also illustrate the diversity in dispersal patterns found within the great-ape lineage.  相似文献   
47.
A bacterial isolate producing siderophore under iron limiting conditions, was isolated from mangroves of Goa. Based on morphological, biochemical, chemotaxonomical and 16S rDNA studies, the isolate was identified as Bacillus amyloliquefaciens NAR38.1. Preliminary characterization of the siderophore indicated it to be catecholate type with dihydroxy benzoate as the core component. Optimum siderophore production was observed at pH 7 in mineral salts medium (MSM) without any added iron with glucose as the carbon source. Addition of NaCl in the growth medium showed considerable decrease in siderophore production above 2% NaCl. Fe+2 and Fe+3 below 2 μM and 40 μM concentrations respectively, induced siderophore production, above which the production was repressed. Binding studies of the siderophore with Fe+2 and Fe+3 indicated its high affinity towards Fe+3. The siderophore concentration in the extracellular medium was enhanced when MSM was amended with essential metals Zn, Co, Mo and Mn, however, decreased with Cu, while the concentration was reduced with abiotic metals As, Pb, Al and Cd. Significant increase in extracellular siderophore production was observed with Pb and Al at concentrations of 50 μM and above. The effect of metals on siderophore production was completely mitigated in presence of Fe. The results implicate effect of metals on the efficiency of siderophore production by bacteria for potential application in bioremediation of metal contaminated iron deficient soils especially in the microbial assisted phytoremediation processes.  相似文献   
48.
Close to three billion people globally and over 800 million in India are dependent on direct combustion of unprocessed solid biomass fuels in inefficient traditional mud stoves. Current cooking practices, besides causing serious health problems, are also being linked to emissions of climate change and pollution agents such as black carbon and ozone precursors. In India several initiatives have been taken up to tackle the problem but the present trajectory of limited technical and social change in cooking energy use is nonetheless persistent in rural areas. In order to develop and scale up alternative cooking technology options, we have analyzed, using the principles of strategic niche management, two projects implemented by The Energy and Resources Institute (TERI) in nine villages in India. The assessment, while highlighting reasons for stability of the current cooking regime, also points to triggers that can destabilize the regime. The focus is also on assessing the influence of protection in the form of subsidies on the process of transition. User preferences relating to social and technical aspects have been analyzed, pointing to forced draft cookstoves as the preferred option notwithstanding cost reductions to address affordability concerns. The assessment indicates that while it is critically important to understand and address the preferences of users and to improve the technology, scaling up will depend on stove cost reduction through further research. Creativity in effective financing schemes and support structures put in place by fostering public–private partnerships are also needed.  相似文献   
49.
The biodegradation behavior of PCL film with high molecular weight (80,000 Da) in presence of bacterium Alcaligenes faecalis and the analysis of degraded polymer film have been carried out. Thin Films of PCL were prepared by means of solution casting method and the bacterial degradation behavior was carried in basal medium, in presence of bacteria with time variation after UV treatment. It was observed that after UV treatment the degradation of polymer film was increased and the degradation rate followed a three steps degradation mechanism. The degraded polymer film was analyzed by means of Differential Scanning Calorimeter (DSC), Thermo Gravimetric Analyzer (TGA) and Fourier Transform Infrared Spectroscope (FTIR). DSC results revealed that at the initial stages of the degradation up to 15–20 days, the bacterium preferentially degrades the amorphous parts of the polymer film over the crystalline zone. Thermo gravimetric analysis highlighted the low temperature stability of degraded films with extent of degradation. FTIR results showed the chain scission mechanism of the polymer chains and also supported the preferential degradation of amorphous phase over crystalline phase in the initial stages of the degradation.  相似文献   
50.
Resveratrol, or 3, 5, 4-trihydroxy-trans-stilbene, is a naturally occurring polyphenol present in several dietary sources such as grapes, soybeans, berries, pomegranate and peanuts. Resveratrol has received recent attention due to its diverse pharmacological activities. However, resveratrol clinical efficacy is limited due to its poor systemic bioavailability, of less than 1%, which is due to its low aqueous solubility, extensive first-pass metabolism and existence of enterohepatic recirculation. Therefore, in order to overcome these limitations, various nanocarriers including polymeric nanoparticles, solid lipid nanoparticles, liposomes, micelles and conjugates have been developed. These nanocarriers are able to enhance the bioavailability of resveratrol by modulating the P-glycoprotein, cytochrome P-450 enzymes and bypassing the hepatic first-pass effect. Here we review resveratrol nanoformulations for enhancing the efficacy of native resveratrol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号