首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
废物处理   1篇
环保管理   4篇
综合类   2篇
基础理论   7篇
污染及防治   17篇
评价与监测   8篇
社会与环境   3篇
  2023年   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   9篇
  2012年   4篇
  2008年   2篇
  2007年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1988年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1965年   1篇
  1962年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
31.
Continuous measurements of particle number (PN), particle mass (PM10), and gaseous pollutants [carbon monoxide (CO), nitric oxide (NO), oxides of nitrogen (NOx), and ozone (O3)] were performed at five urban sites in the Los Angeles Basin to support the University of Southern California Children's Health Study in 2002. The degree of correlation between hourly PN and concentrations of CO, NO, and nitrogen dioxide (NO2) at each site over the entire year was generally low to moderate (r values in the range of 0.1-0.5), with a few notable exceptions. In general, associations between PN and O3 were either negative or insignificant. Similar analyses of seasonal data resulted in levels of correlation with large variation, ranging from 0.0 to 0.94 depending on site and season. Summertime data showed a generally higher correlation between the 24-hr average PN concentrations and CO, NO, and NO2 than corresponding hourly concentrations. Hourly correlations between PN and both CO and NO were strengthened during morning rush-hour periods, indicating a common vehicular source. Comparing hourly particle number concentrations between sites also showed low to moderate spatial correlations, with most correlation coefficients below 0.4. Given the low to moderate associations found in this study, gaseous co-pollutants should not be used as surrogates to assess human exposure to airborne particle number concentrations.  相似文献   
32.

Purpose

The purpose of this study is the development of a suitable process for the disinfection of drinking water by evaluating bactericidal efficacy of silver ions from silver electrodes.

Methods

A prototype of a silver ioniser with silver electrodes and control unit has been fabricated. Silver ions from silver electrodes in water samples were estimated with an atomic absorption spectrophotometer. A fresh culture of Escherichia coli (1.75?×?103 c.f.u./ml) was exposed to 1, 2, 5, 10 and 20?ppb of silver ions in 100?ml of autoclaved tap water for 60?min. The effect of different pH and temperatures on bactericidal efficacy was observed at constant silver ion concentration (5?ppb) and contact time of 30?min.

Results

The maximum bactericidal activity (100%) was observed at 20?ppb of silver ion concentration indicating total disinfection after 20?min while minimum bactericidal activity (25%) was observed after 10?min at 01?ppb of silver ions. Likewise, 100% bactericidal activity was noticed with 2, 5 and 10?ppb of silver ions after 60, 50 and 40?min, respectively. Bactericidal activity at pH?5, 6, 7, 8 and 9 was observed at 79.9%, 79.8%, 80.5%, 100% and 100%, respectively, whereas it was 80.4%, 88.3%, 100%, 100% and 100% at 10°C, 20°C, 30°C, 40°C and 50°C, respectively.

Conclusion

The findings of this study revealed that very low concentrations of silver ions at pH?8?C9 and temperature >20°C have bactericidal efficacy for total disinfection of drinking water. Silver ionisation is suitable for water disinfection and an appropriate alternative to chlorination which forms carcinogenic disinfection by-products.  相似文献   
33.
This paper compares an existing unreliable grid supply with a proposed PV–biodiesel hybrid energy system in order to find the feasibility of the latter for improvement in reliability of power supply, lower pollutant emissions and saving of coal reserves. In the present study, the electrical load of a cement technology institute located in Bhilai, India, has been selected for the purpose of analysis. The results show that hybrid PV–biodiesel system comprising 25 kW PV array, 8 kW biodiesel generator-1, 20 kW biodiesel generator-2, 10 kW inverter and 10 kW rectifier will supply power to the institute avoiding addition of 27.744 tons of CO2 in atmosphere and save 55,080 kg of coal per year with improvement in reliability from 93.15 to 100%.  相似文献   
34.
35.
This study investigated phosphate-induced lead immobilization from different Pb minerals in soils under varying pHs. Four soils were used, including one Pb-contaminated soil (NC-Soil) and three soils spiked with litharge (PbO), cerrusite (PbCO3), or anglesite (PbSO4), referred to as PbO-soil, PbCO3-soil, and PbSO4-soil, respectively. The soils were equilibrated with KCl and Ca(H2PO4)(2).H2O under pH of 3-7. At low pH (3 and 5), Pb solubility followed PbO-soil>PbCO3-soil>PbSO4-soil; while at pH=7, it was PbSO4-soil>PbO-soil>PbCO3-soil. Phosphate decreased Pb dissolution time from >180 to <60 min and reduced soluble Pb by 67-100%. This was mostly via transformation of Pb minerals into chloropyromorphite [Pb(5)(PO(4))(3)Cl]. Our results indicated that P addition can effectively transform various Pb minerals into insoluble chloropyromorphite in soils. This transformation was more significant at acidic condition (e.g., pH相似文献   
36.
Fog water samples were collected in the months of December and January during 1998–2000 at Agra, India. The samples were analyzed for pH, major anions (F, Cl, SO4 2−, NO3 , HCOO and CH3COO), major cations (Ca2+, Mg2+, Na+ and K+) and NH4 + using ion chromatography, ICP-AES and spectrophotometer methods, respectively. pH of fog water samples ranged between 7.0 and 7.6 with a volume weighted mean of 7.2, indicating its alkaline characteristic. NH4 + contributed 40%, SO4 2− and NO3 accounted for 28%, while Ca2+, Mg2+, Na+ and K+ accounted for 16% of the total ionic concentration. The ratios of Mg2+/Ca2+ and Na+/Ca2+ in fog water indicates that 50–75% of fog water samples correspond to the respective ratios in local soil. Significant correlation between Ca2+, Mg2+, Na+ and K+ suggests their soil origin. The order of neutralization, NH4 + (1.4) > Ca2+ (0.28) > Mg2+ (0.12), indicates that NH4 + is the major neutralizing species. Fog water and atmospheric alkalinity were also computed and were found to be 873 and 903 neqm−3, respectively. Both of these values are higher than values reported from temperate sites and thus indicate that at the present level of pollutants, there is no risk of acid fog problem. The study also shows that the alkaline nature of fog water is due to dissolution of ammonia gas and partly due to interaction of fog water with soil derived aerosols.  相似文献   
37.
Phosphate-induced metal immobilization in a contaminated site   总被引:31,自引:0,他引:31  
To assess the efficiency of P-induced metal immobilization in soils, a pilot-scale field experiment was conducted at a metal contaminated site located in central Florida. Phosphate was applied at a P/Pb molar ratio of 4.0 with three treatments: 100% of P from H3PO4, 50% of P from H3PO4+ 50% of P from Ca(H2PO4)2, and 50% of P from H3PO4+5% phosphate rock in the soil. Approximately 1 year after P application, soil and plant samples were collected to determine mobility and bioavailability of selected metals (Pb, Zn, and Cu) using sequential extraction procedure and mineralogical characterization using X-ray diffraction (XRD) and scanning electron microscope-energy dispersive X-ray (SEM-EDX) analysis. Phosphorus distribution and soil pH effects were also evaluated. Phosphate was more effective in transforming soil Pb (to 53%) from the non-residual to the residual phase than soil Zn (to 15%) and soil Cu (to 13%). This was because Pb was immobilized by P via formation of an insoluble pyromorphite-like mineral in the surface and subsurface of the soil, whereas no phosphate mineral Zn or Cu was identified. While P amendment enhanced metal uptake in the roots of St. Augustine grass (Stenotaphrum secundatum), it significantly reduced metal translocation from root to shoot, especially Pb via formation of a pyromorphite-like mineral on the membrane surface of the root. A mixture of H3PO4 and phosphate rock was effective in metal immobilization, with less soil pH reduction and less soluble P. Although H3PO4 was effective in immobilizing Pb, its use should be limited to minimize soil pH reduction and potential eutrophication risk.  相似文献   
38.
39.
40.
Mercury, a toxic metal known to have several deleterious affects on human health, has been one of the principal contaminants of concern in the Great Lakes basin. There are numerous anthropogenic sources of mercury to the Great Lakes area. Combustion of coal, smelting of non ferrous metals, and incineration of municipal and medical waste are major sources of mercury emissions in the region. In addition to North American anthropogenic emissions, global atmospheric emissions also significantly contribute to the deposition of mercury in the Great Lakes basin. Both the USA and Canada have agreed to reduce human exposure to mercury in the Great Lakes basin and have significantly curtailed mercury load to this region through individual and joint efforts. However, many important mercury sources, such as coal-fired power plants, still exist in the vicinity of the Great Lakes. More serious actions to drastically reduce mercury sources by employing alternative energy sources, restricting mercury trade and banning various mercury containing consumer products, such as dental amalgam are as essential as cleaning up the historical deposits of mercury in the basin. A strong political will and mass momentum are crucial for efficient mercury management. International cooperation is equally important. In the present paper, we have analyzed existing policies in respective jurisdictions to reduce mercury concentration in the Great Lakes environment. A brief review of the sources, occurrence in the Great Lakes, and the health effects of mercury is also included.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号