首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2274篇
  免费   10篇
  国内免费   5篇
安全科学   40篇
废物处理   65篇
环保管理   114篇
综合类   824篇
基础理论   415篇
环境理论   7篇
污染及防治   646篇
评价与监测   90篇
社会与环境   86篇
灾害及防治   2篇
  2021年   16篇
  2019年   17篇
  2018年   39篇
  2017年   39篇
  2016年   46篇
  2015年   38篇
  2014年   51篇
  2013年   103篇
  2012年   43篇
  2011年   84篇
  2010年   60篇
  2009年   68篇
  2008年   98篇
  2007年   92篇
  2006年   77篇
  2005年   76篇
  2004年   53篇
  2003年   65篇
  2002年   55篇
  2001年   71篇
  2000年   46篇
  1999年   41篇
  1998年   24篇
  1997年   25篇
  1996年   18篇
  1995年   19篇
  1994年   40篇
  1992年   18篇
  1991年   24篇
  1989年   15篇
  1984年   20篇
  1981年   20篇
  1976年   15篇
  1973年   15篇
  1972年   16篇
  1969年   19篇
  1968年   16篇
  1967年   19篇
  1966年   26篇
  1965年   30篇
  1964年   19篇
  1963年   27篇
  1962年   25篇
  1961年   36篇
  1960年   29篇
  1959年   32篇
  1958年   20篇
  1957年   33篇
  1956年   23篇
  1955年   19篇
排序方式: 共有2289条查询结果,搜索用时 46 毫秒
921.
Contamination caused by pesticides in agriculture is a source of environmental poor water quality in some of the European Union countries. Without treatment or targeted mitigation, this pollution is diffused in the environment. Pesticides and some metabolites are of increasing concern because of their potential impacts on the environment, wildlife and human health. Within the context of the European Union (EU) water framework directive context to promote low pesticide-input farming and best management practices, the EU LIFE project ArtWET assessed the efficiency of ecological bioengineering methods using different artificial wetland (AW) prototypes throughout Europe. We optimized physical and biological processes to mitigate agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Mitigation solutions were implemented at full-scale demonstration and experimental sites. We tested various bioremediation methods at seven experimental sites. These sites involved (1) experimental prototypes, such as vegetated ditches, a forest microcosm and 12 wetland mesocosms, and (2) demonstration prototypes: vegetated ditches, three detention ponds enhanced with technology of constructed wetlands, an outdoor bioreactor and a biomassbed. This set up provides a variety of hydrologic conditions, with some systems permanently flooded and others temporarily flooded. It also allowed to study the processes both in field and controlled conditions. In order to compare the efficiency of the wetlands, mass balances at the inlet and outlet of the artificial wetland will be used, taking into account the partition of the studied compound in water, sediments, plants, and suspended solids. The literature background necessary to harmonize the interdisciplinary work is reviewed here and the theoretical framework regarding pesticide removal mechanisms in artificial wetland is discussed. The development and the implementation of innovative approaches concerning various water quality sampling strategies for pesticide load estimates during flood, specific biological endpoints, innovative bioprocess applied to herbicide and copper mitigation to enhance the pesticide retention time within the artificial wetland, fate and transport using a 2D mixed hybrid finite element model are introduced. These future results will be useful to optimize hydraulic functioning, e.g., pesticide resident time, and biogeochemical conditions, e.g., dissipation, inside the artificial wetlands. Hydraulic retention times are generally too low to allow an optimized adsorption on sediment and organic materials accumulated in artificial wetlands. Absorption by plants is not either effective. The control of the hydraulic design and the use of adsorbing materials can be useful to increase the pesticides residence time and the contact between pesticides and biocatalyzers. Pesticide fluxes can be reduced by 50–80% when hydraulic pathways in artificial wetlands are optimized by increasing ten times the retention time, by recirculation of water, and by deceleration of the flow. Thus, using a bioremediation method should lead to an almost complete disappearance of pesticides pollution. To retain and treat the agricultural nonpoint-source po a major stake for a sustainable development.  相似文献   
922.
Different uptake routes of contaminants were analysed with focus on particle-bound pollutants. Bioavailability of cadmium was determined with quantitative mRNA-analysis using the expression of the “cadmium responsive gene” cdr- in Caenorhabditis elegans. Comparable experiments were performed with fluoranthene as organic pollutant. The exposure in medium was compared with and without bacteria as food particles. Both bioaccumulation and toxic effects were most influenced via the food exposure. Inorganic particles increased also the uptake of cadmium, but significantly less than food or mixtures of food and inorganic particles. The exposure of fluoranthene reduced the reproduction of the nematodes, if a gene expression threshold was exceeded. However, bioavailabilty of fluoranthene via food particles caused a faster response of the cyp-expression. Thus means, the internal availability is crucial influenced by the uptake route.  相似文献   
923.
The genetic structure of benthic marine invertebrates is often described as “chaotic” when genetic structure cannot be explained and barriers to dispersal and gene flow cannot be identified. Here, chaotic patterns of genetic structure for the polychaete Pygospio elegans (Claparède) sampled at 16 locations from the heterogeneous Isefjord–Roskilde Fjord estuary complex in Denmark were found. There was no isolation by distance, and the geography of the estuary complex did not seem to pose a barrier to dispersal and gene flow in this species. We investigated whether characteristics of the environment could be related to the genetic structure and possibly restrict gene flow in this species. Additionally, since P. elegans is poecilogonous, producing larvae with different pelagic developmental periods, we investigated whether observed developmental modes in the samples might clarify the genetic patterns. None of the tested factors explained the population genetic structure. However, a high degree of relatedness among individuals in almost all samples was found. Samples with a larger percentage of young individuals had more related individuals, suggesting that different cohorts could be comprised of individuals with different degrees of relatedness. Relatedness within a site could be increased by limited larval dispersal, collective dispersal of related larvae, sweepstakes reproductive success, or asexual reproduction, but distinguishing between these requires further study. Using a “seascape genetics” approach allowed us to investigate some of the numerous potential factors that could influence population genetic structure in a poecilogonous species.  相似文献   
924.
Environment Systems and Decisions - Organizational and technical approaches have proven successful in increasing the performance and preventing risks at socio-technical systems at all scales....  相似文献   
925.

Background

Relocations and restorations do not only change the ecological passability and sediment continuity of a river but also its flow behavior and fluvial morphodynamics. Sediment transport processes and morphological development can be assessed with field measurements, also taking the transport of sediment-bounded contaminants as a tracer material for fluvial morphodynamics into account. The objective of this study was to determine the morphological development of the Inde River (a tributary of the Rur River in North-Rhine Westphalia, Germany) towards its pre-defined guiding principle after a relocation and restoration in 2005 AD.

Methods

The fluvial morphodynamics of the Inde River were analyzed over a period of almost 15 years taking sediment samples, analyzing echo soundings of the river’s bathymetry and determining the heavy metal content of the sediment as a tracer material for the morphological development.

Results

The results show that the relocation and restoration of the Inde River initiates new hydrodynamic processes, which cause morphological changes of the river widths, meander belts and channel patterns. The riverbed of the new Inde River has incised into the ground due to massive erosion, which has led to increased fine sediment transport in the downstream direction. The reasons for and consequences of this fine sediment transport are discussed and correlated to the sediment continuity of a river.

Conclusions

Overall, the new Inde River has reached its goal of being a natural river as a consequence of the relocation and restoration and has adapted its new conditions towards a dynamic morphological equilibrium.
  相似文献   
926.

Background

Few suitable and standardized test methods are currently available to test the effects of genetically modified plants (GMP) on non-target organisms. To fill this gap and improve ecotoxicological testing for GMP, we developed a new soil ecotoxicological test method using sciarid larvae as test organisms.

Results

Bradysia impatiens was identified as a candidate species. Species of the genus Bradysia occur in high numbers in European agroecosystems and B. impatiens can be reared in the laboratory in continuous culture. A functional basic test design was successfully developed. Newly hatched larvae were used as the initial life stage to cover most of the life cycle of the species during the test. Azadirachtin was identified as a suitable reference substance. In several tests, the effects of this substance on development time and emergence rate varied for different temperatures and test substrates. The toxicity was higher at 25 °C compared to 20 °C and in tropical artificial soil compared to coconut fiber substrate.

Conclusions and outlook

Results suggest that the developed test system is suitable to enter a full standardization process, e.g., via the Organisation for Economic Co-operation and Development. Such a standardization would not only assist the risk assessment of GMP, but could include other stressors such as systemic pesticides or veterinary pharmaceuticals reaching the soil, e.g., via spreading manure. The use of sciarid flies as test organisms supports recommendations of EFSA, which stressed the ecological role of flies and encouraged including Diptera into test batteries.
  相似文献   
927.
All chemicals form non-extractable residues (NER) to various extents in environmental media like soil, sediment, plants and animals. NER can be quantified in environmental fate studies using isotope-labeled (such as 14C or 13C) tracer compounds. Previous NER definitions have led to a mismatch of legislation and state of knowledge in research: the residues are assumed to be either irreversibly bound degradation products or at least parts of these residues can be released. In the latter assumption, soils and sediments are a long-term source of slowly released residues. We here present a conceptual experimental and modeling approach to characterize non-extractable residues and provide guidance how they should be considered in the persistence assessment of chemicals and pesticides. Three types of NER can be experimentally discriminated: sequestered and entrapped residues (type I), containing either the parent substance or xenobiotic transformation products or both and having the potential to be released, which has indeed been observed. Type II NER are residues that are covalently bound to organic matter in soils or sediments or to biological tissue in organisms and that are considered being strongly bound with very low remobilization rates like that of humic matter degradation rates. Type III NER comprises biogenic NER (bioNER) after degradation of the xenobiotic chemical and anabolic formation of natural biomolecules like amino acids and phospholipids, and other biomass compounds. We developed the microbial turnover to biomass (MTB) model to predict the formation of bioNER based on the structural properties of chemicals. Further, we proposed an extraction sequence to obtain a matrix containing only NER. Finally, we summarized experimental methods to distinguish the three NER types. Type I NER and type II NER should be considered as potentially remobilizable residues in persistence assessment but the probability of type II release is much lower than that of type I NER, i.e., type II NER in soil are “operationally spoken” irreversibly bound and can be released only in minute amounts and at very slow rates, if at all. The potential of remobilization can be evaluated by chemical, physical and biological methods. BioNER are of no environmental concern and, therefore, can be assessed as such in persistence assessment. The general concept presented is to consider the total amount of NER minus potential bioNER as the amount of xenoNER, type I?+?II. If a clear differentiation of type I and type II is possible, for the calculation of half-life type I NER are considered as not degraded parent substance or transformation product(s). On the contrary, type II NER may generally be considered as (at least temporarily) removed. Providing proof for type II NER is the most critical issue in NER assessment and requires additional research. If no characterization and additional information on NER are available, it is recommended to assess the total amount as potentially remobilizable. We propose our unified approach of NER characterization and evaluation to be implemented into the persistence and environmental hazard assessment strategies for REACH chemicals and biocides, human and veterinary pharmaceuticals, and pesticides, irrespective of the different regulatory frameworks.  相似文献   
928.
929.
930.
Aerobic and anaerobic microbial key processes were quantified and compared to microbial numbers and morphological structure in Mediterranean sponges. Direct counts on histological sections stained with DAPI showed that sponges with high microbial abundances (HMA sponges) have a denser morphological structure with a reduced aquiferous system compared to low microbial abundance (LMA) sponges. In Dysidea avara, the LMA sponge, rates of nitrification and denitrification were higher than in the HMA sponge Chondrosia reniformis, while anaerobic ammonium oxidation and sulfate reduction were below detection in both species. This study shows that LMA sponges may host physiologically similar microbes with comparable or even higher metabolic rates than HMA sponges, and that anaerobic processes such as denitrification can be found both in HMA and LMA sponges. A higher concentration of microorganisms in the mesohyl of HMA compared to LMA sponges may indicate a stronger retention of and, hence, a possible benefit from associated microbes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号