首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  国内免费   1篇
废物处理   1篇
环保管理   3篇
综合类   1篇
基础理论   1篇
污染及防治   11篇
评价与监测   2篇
社会与环境   1篇
  2022年   1篇
  2021年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2004年   3篇
  2001年   2篇
  1997年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有20条查询结果,搜索用时 640 毫秒
11.
12.
Mechanical–biological treatments (MBTs) of urban waste are growing in popularity in many European countries. Recent studies pointed out that their contribution in terms of volatile organic compounds (VOCs) and other air pollutants is not negligible. Compared to classical removal technologies, non-thermal plasmas (NTP) showed better performances and low energy consumption when applied to treat lowly concentrated streams. Therefore, to study the feasibility of the application of NTP to MBTs, a Dielectric Barrier Discharge reactor was applied to treat a mixture of air and methyl ethyl ketone (MEK), to simulate emissions from MBTs. The removal efficiency of MEK was linearly dependent upon time, power and specific input energy. Only 2–4% of MEK was converted to carbon dioxide (CO2), the remaining carbon being involved in the formation of byproducts (methyl nitrate and 2,3-butanedione, especially). For future development of pilot-scale reactors, acting on residence time, power, convective flow and catalysts will help finding a compromise between energy consumption, desired abatement and selectivity to CO2.  相似文献   
13.
A loamy clay soil containing unextractable 14C-ring labeled atrazine residues was incubated in microcosms under abiotic and biotic conditions. The mineralization activity of the soil microflora was evaluated by the release of total CO2 and 14C02. After 63 days of sample incubation the total organic carbon mineralization was of 1.71%, that of 14C-residues was of 0.72% of the initial radioactivity. No direct relationship was established between the mineralization of atrazine residues and the global mineralization. The contribution of soil microorganisms in the release of 14C-residues was weak. The availability of non-extractable residues was mainly controlled by physico-chemical factors. The low value of the reextractability rate and the distribution of bound residues during the soil sample incubation shown the active role of organic matter in detoxification procedure. Ninety percent of the residues remained bound after 63 days of incubation and were thus, potentially available without biocide activity.

The fractionation of soil organic matter allowed to specify the distribution of bound residues within the organic compartments. After a long-stay of pesticides in soils, approximately 65% of bound residues were associated with humin.  相似文献   

14.
This study examined the effect of regular tillage and cropping on the dissipation rate of PAHs in contaminated soil. Lysimeters were placed under natural climatic conditions for 2 years and designed to measure the concentration of PAHs in soil and leachates and their toxicity. The soil initially contained 2077 microg PAHs g(-1). The largest decrease in PAHs concentration occurred during the first 6 months. No further significant decrease was observed after this time. The surface soil layer always contained significantly less PAHs than the deeper layer, regardless of the treatments. Less than 8.4 x 10(-8)% of the PAH initially present in the soil (e.g. less or equal to 33 microg PAHs per lysimeter) were leached from the soils during the experiment and the leachates presented no toxicity (as measured by the Microtox test). The toxicity of the soils decreased with time and was significantly lower on the cropped soil compared to the other treatments, despite the residual concentration of PAHs being the highest in this soil. This study demonstrated that the dissipation rates of PAHs were slow after using natural attenuation even when tillage and cropping were performed at the soil surface.  相似文献   
15.
The release of bound [14C] atrazine residues and their uptake by maize plants was investigated.

“Natural”; humic acids, extracted from a brown soil, and “model”; humic acids, prepared from catechol, both containing bound [14C] atrazine residues were incubated with plants in soil. After 21 days, the maize plants contained 0.7% (plants grown in soil mixed with “natural”; humic acids) to 1.7% (plants grown in soil mixed with “model”; humic acids) of the radioactivity originally introduced.

The roots contained 55 to 70% of the [14C] residues whereas the remainder was present in the shoots. A significant amount of the total [14C] residues (29 to 53%) became again bound in plant tissues, whereas the, majority of extractable [14C] residues was present in the form of conjugates.

The behaviour of “model”; humic acid‐bound residues was comparable to that of “natural”; humic acid‐bound residues or soil‐bound residues.  相似文献   
16.
The aim of this study was to assess the influence of the polycyclic aromatic hydrocarbons (PAH)-degrading activity in the fate of fluoranthene in soils. Three soil samples with different degrading activities (an industrial soil, the same industrial soil after biostimulation, and an agricultural soil) were spiked with 14C-fluoranthene and incubated for 6 mo with monitoring of biodegradation and mineralization. To follow the distribution of the 14C-fluoranthene residues (i.e., 14C-fluoranthene and its degradation products) among the soil compartments, we performed successively leaching, centrifugation (to collect intra-aggregate pore water), solvent extraction, and combustion of the soil columns. In the industrial soil, no mineralization of 14C-fluoranthene was observed, and only 3% of the initial 14C-activity was non-extractable (with acetone:dichloromethane) after 165 d of incubation. The biostimulation (addition of unlabeled polycyclic aromatic hydrocarbons) increased the degrading activity in this soil (59% of 14C-fluoranthene was mineralized) and increased the residues sequestration (13% of 14C-activity was non-extractable). The microflora of the agricultural soil mineralized 14C-fluoranthene more slowly and to a lesser extent (25%) than the biostimulated soil, but a higher amount of 14C-activity was sequestered (41%). Thus, the rate and extent of 14C-fluoranthene mineralization seemed to be related to the 14C-activity sequestration by controlling the accumulation of degradation products in the soil. 14C-Fluoranthene biodegradation enhanced the concentration of 14C-polar compounds in the intra-aggregate pore water. Our results point out the close link between fluoranthene biodegradation and two key aging processes, diffusion and sequestration, in soils. Biodegradation controls the mobility and sequestration of residues by transforming fluoranthene into more polar molecules that can diffuse into the intra-aggregate pore water and then might become bound to the matrix or entrapped in the microporosity.  相似文献   
17.
Batch adsorption and desorption experiments were performed using thirteen agricultural soil samples and five pesticides. Experimental data indicated a gradient in pesticide adsorption on soil: trifluralin > 2,4-D > isoproturon> atrazine > bentazone. Atrazine, isoproturon and trifluralin adsorption were correlated to soil organic matter content (r2 = 0.7, 0.82, 0.79 respectively). Conversely, bentazone adsorption was governed by soil pH (r2 = 0.68) while insignificant effect has been shown in the case of 2,4-D. Multiple linear regressions were used to combine relationships between the various soil parameters and the Freundlich adsorption coefficient (K(f)) of each pesticide. Then desorption was assessed since it may reflect some of the interactions involved between the pesticides and the soil components. Adsorbed molecules were released into aqueous solution in the following order: bentazone > atrazine> isoproturon> 2,4-D > trifluralin. The occurrence of hysteresis did not allow an accurate interpretation of the pesticide desorption data because of the possible interplay of several processes.  相似文献   
18.
The fate and transport of 2,4-dichlorophenoxyacetic acid (2,4-D) in the subsurface is affected by a complex, time-dependent interplay between sorption and mineralization processes. 2,4-D is biodegradable in soils, while adsorption/desorption is influenced by both soil organic matter content and soil pH. In order to assess the dynamic interactions between sorption and mineralization, 2,4-D mineralization experiments were carried using three different soils (clay, loam and sand) assuming different contact times. Mineralization appeared to be the main process limiting 2,4-D availability, with each soil containing its own 2,4-D decomposers. For the clay and the loamy soils, 45 and 48% of the applied dose were mineralized after 10 days. By comparison, mineralization in the sandy soil proceeded initially much slower because of longer lag times. While 2,4-D residues immediately after application were readily available (>93% was extractable), the herbicide was present in a mostly unavailable state (<2% extractable) in all three soils after incubation for 60 days. We found that the total amount of bound residue decreased between 30 and 60 incubation days. Bioaccumulation may have led to reversible immobilization, with some residues later becoming more readily available again to extraction and/or mineralization.  相似文献   
19.
Adding sludge to agricultural soil results in added organic matter, nutrients and metallic and/or organic pollutants. These components may modify the behaviour of pesticides in the soil. We monitored possible changes in the degradation of the herbicide isoproturon (production of CO2 and degradation products) in soil amended with sludge, heavy metals or nitrogen and phosphorus. The treated and control soils were incubated under controlled conditions for 60 days. The nitrogen and phosphorus had the greatest effect on isoproturon degradation, independent of the presence of pollutants. Mineralisation of the herbicide to CO2 was slow and seemed to be linked to a fast degradation and to the accumulation of a complex degradation product that was neither catabolized nor adsorbed, 4,4'-diisopropylazobenzene. This degradation pathway also produced smaller amounts of non-extractable residues. Sewage sludge had no significant effect on isoproturon degradation, despite a large increase of organic matter mineralisation (factor 2).  相似文献   
20.
This study proposes a method to estimate the maximal tolerable value for the atmospheric deposition of dioxins (PCDD/Fs) to soil. The case study for the application of this methodology is an Alpine valley where a steel production plant is present. In order to estimate the limit value for the PCDD/F deposition, consolidated food chain models were applied, but were adapted to be run backwards with respect to their original formulation, by starting from the diet of people living in the region and from the PCDD/F Tolerable Daily Intake value proposed by the World Health Organization. For this case study, the estimated limit value was 2.30 pg WHO-TEQ m−2 d−1 when only local diary products were taken into account and 1.91 pg WHO-TEQ m−2 d−1 when also the role of local cereals and vegetables was considered. The average PCDD/F deposition measured in the same region during a monitoring campaign was lower than the above limit values (1.40 pg WHO-TEQ m−2 d−1). Indications on how to consider the contribution of meat and fish are provided too. The approach proposed in this paper represents a useful tool to assess the acceptable overall deposition for a specific region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号