首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
废物处理   2篇
环保管理   2篇
综合类   8篇
基础理论   8篇
污染及防治   6篇
评价与监测   3篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1989年   2篇
  1982年   1篇
  1980年   1篇
  1964年   1篇
  1959年   1篇
  1955年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
21.
Schindler DW  Smol JP 《Ambio》2006,35(4):160-168
Despite their generally isolated geographic locations, the freshwaters of the north are subjected to a wide spectrum of environmental stressors. High-latitude regions are especially sensitive to the effects of recent climatic warming, which have already resulted in marked regime shifts in the biological communities of many Arctic lakes and ponds. Important drivers of these limnological changes have included changes in the amount and duration of snow and ice cover, and, for rivers and lakes in their deltas, the frequency and extent of spring floods. Other important climate-related shifts include alterations in evaporation and precipitation ratios, marked changes in the quality and quantity of lake and river water inflows due to accelerated glacier and permafrost melting, and declining percentages of precipitation that falls as snow. The depletion of stratospheric ozone over the north, together with the clarity of many Arctic lakes, renders them especially susceptible to damage from ultraviolet radiation. In addition, the long-range atmospheric transport of pollutants, coupled with the focusing effects of contaminant transport from biological vectors to some local ecosystems (e.g., salmon nursery lakes, ponds draining seabird colonies) and biomagnification in long food chains, have led to elevated concentrations of many persistent organic pollutants (e.g., insecticides, which have never been used in Arctic regions) and other pollutants (e.g., mercury). Rapid development of gas and oil pipelines, mining for diamonds and metals, increases in human populations, and the development of all-season roads, seaports, and hydroelectric dams will stress northern aquatic ecosystems. The cumulative effects of these stresses will be far more serious than those caused by changing climate alone.  相似文献   
22.
Habitat heterogeneity can generate intraspecific diversity through local adaptation of populations. While it is becoming increasingly clear that population diversity can increase stability in species abundance, less is known about how population diversity can benefit consumers that can integrate across population diversity in their prey. Here we demonstrate cascading effects of thermal heterogeneity on trout-salmon interactions in streams where rainbow trout rely heavily on the seasonal availability of anadromous salmon eggs. Water temperature in an Alaskan stream varied spatially from 5 degrees C to 17.5 degrees C, and spawning sockeye salmon showed population differentiation associated with this thermal heterogeneity. Individuals that spawned early in cool regions of the 5 km long stream were genetically differentiated from those spawning in warmer regions later in the season. Sockeye salmon spawning generates a pulsed resource subsidy that supports the majority of seasonal growth in stream-dwelling rainbow trout. The spatial and temporal structuring of sockeye salmon spawn timing in our focal stream extended the duration of the pulsed subsidy compared to a thermally homogeneous stream with a single population of salmon. Further, rainbow trout adopted movement strategies that exploited the multiple pulses of egg subsidies in the thermally heterogeneous stream. Fish that moved to track the resource pulse grew at rates about 2.5 times higher than those that remained stationary or trout in the reference stream with a single seasonal pulse of eggs. Our results demonstrate that habitat heterogeneity can have important effects on the population diversity of dominant species, and in turn, influence their value to species that prey upon them. Therefore, habitat homogenization may have farther-reaching ecological effects than previously considered.  相似文献   
23.
The gain or loss of a chromosome—or aneuploidy—acts as one of the major triggers for infertility and pregnancy loss in humans. These chromosomal abnormalities affect more than 40% of eggs in women at both ends of the age spectrum, that is, young girls as well as women of advancing maternal age. Recent studies in human oocytes and embryos using genomics, cytogenetics, and in silico modeling all provide new insight into the rates and potential genetic and cellular factors associated with aneuploidy at varying stages of development. Here, we review recent studies that are shedding light on potential molecular mechanisms of chromosome missegregation in oocytes and embryos across the entire female reproductive life span.  相似文献   
24.
Book reviews     
  相似文献   
25.
Epidemiological analysis of sequential growth data may be a tool in assessing ozone sensitivity of mature trees. Annual shoot growth of mature Fagus sylvatica in 83 Swiss permanent forest observation plots and of Picea abies in 61 plots was evaluated for 11 and 8 consecutive years, respectively, using branches harvested every 4 years. The data were assessed as annual deviation from average growth and related to fructification, ozone, meteorological parameters, and modelled soil water content using a mixed linear model. In beech, a significant association between ozone and shoot growth was observed which corresponded to a 7.4% growth reduction between 0 and 10 ppm h AOT40 (accumulated ozone over threshold 40). This is in the same order of magnitude as the response observed in experiments with seedlings. No interaction was found between ozone and drought parameters. In Norway spruce, shoot growth was neither associated with ozone nor with drought.  相似文献   
26.
引言 近50年来美国住宅开发大量增加.所增住宅很多集中在市区,美国几乎80%的人口现今居住在城里[1].当人们从农村地区和市中心向城市边缘和郊区迁移时,城市变得越来越大,人口增加、地区扩大[1].在城市扩建时,开发商把农业用地和林区的土地转变成城市和城郊[2,3].于是,在城市的边缘、在城乡结合部常常夹杂着被建筑工地、新开发的住宅和商业网点所分割的小块农田和林地以及现在被城市扩建所吞噬的过去十分偏僻的住宅[1,2].  相似文献   
27.
Organisms can control movements of nutrients and matter by physically modifying habitat. We examined how an ecosystem engineer, sockeye salmon (Oncorhynchus nerka), influences seasonal fluxes of sediments, nitrogen (N), and phosphorus (P) in streams of southwestern Alaska. The purpose of this study was to investigate whether salmon act as net importers or net exporters of matter and nutrients from streams and how these roles change as a function of salmon population density. We measured discharge and concentrations of suspended sediments and total N and P every 7-14 days for up to four summers in 10 streams spanning a gradient in salmon densities. We statistically allocated whole-season fluxes to salmon activities, such as excretion and bioturbation, and to export by hydrologic discharge. In addition, we used counts of spawning salmon to estimate nutrient and matter imports by salmon to streams. Large seasonal pulses of suspended sediments, P, and N were associated with salmon spawning activities, often increasing export an order of magnitude higher than during pre-salmon levels. Years and streams with more salmon had significantly higher levels of export of sediments and nutrients. In addition, years with higher precipitation had higher background export of P and N. Salmon exported an average of the equivalent of 189%, 60%, and 55% of total matter, P, and N that salmon imported in their bodies. The relative magnitude of export varied; salmon exported more than their bodies imported in 80%, 20%, and 16% across all streams and years for sediments, P, and N, respectively. A bioassay experiment indicated that the P exported by salmon is directly available for use by primary producers in the downstream lake. These results demonstrate that salmon not only move nutrients upstream on large spatial scales via their migration from the ocean and subsequent death, but also redistribute matter and nutrients on finer spatial scales through their spawning activities.  相似文献   
28.
29.
In most European member states, more or less completely new monitoring networks and assessment methods had to be developed as basic technical tools for the implementation of the EU Water Framework Directive (WFD). In the river basin of the Stever, the largest tributary to the river Lippe (River Rhine, Northrhine-Westphalia, Germany), a WFD-monitoring network was developed, and new German biological methods for rivers, developed for the purposes of the WFD, have been applied. Like most rivers in the German lowland areas, nearly all the river courses of the Stever system are altered by hydro-morphological degradation (straightening, bank fixation, lack of canopy etc.). In 2005 and 2006, the biological quality components of macroinvertebrates, fish and macrophytes were investigated and evaluated for the assessment of the ecological status of about 50 surface water bodies within the whole Stever system. Basic physical and chemical parameters, as well as priority substances, have been analysed in the same period. In this contribution, the design of the new monitoring network, the core principles of the German biological methods, and the most important results of the pilot monitoring will be presented. As main impacts with severe effects on the faunal and floral communities, the many migration barriers and the bad quality of the river morphology could be stated. Organic pollution is no more a severe problem in the Stever. The pilot project was successfully conducted in close collaboration with the water authorities (District Government Münster) and the water association Lippeverband.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号