首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   432篇
  免费   15篇
  国内免费   3篇
安全科学   25篇
废物处理   9篇
环保管理   87篇
综合类   49篇
基础理论   138篇
污染及防治   95篇
评价与监测   34篇
社会与环境   10篇
灾害及防治   3篇
  2023年   9篇
  2022年   4篇
  2021年   7篇
  2020年   8篇
  2019年   5篇
  2018年   11篇
  2017年   7篇
  2016年   12篇
  2015年   17篇
  2014年   18篇
  2013年   35篇
  2012年   27篇
  2011年   21篇
  2010年   21篇
  2009年   14篇
  2008年   21篇
  2007年   31篇
  2006年   20篇
  2005年   16篇
  2004年   11篇
  2003年   15篇
  2002年   13篇
  2001年   12篇
  2000年   4篇
  1999年   8篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   6篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   6篇
  1990年   3篇
  1988年   6篇
  1987年   2篇
  1986年   5篇
  1985年   6篇
  1984年   7篇
  1982年   3篇
  1981年   5篇
  1980年   1篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
  1969年   3篇
  1966年   1篇
  1934年   1篇
排序方式: 共有450条查询结果,搜索用时 156 毫秒
141.
Seagrasses commonly display carbon-limited photosynthetic rates. Thus, increases in atmospheric pCO2, and consequentially oceanic CO2(aq) concentrations, may prove beneficial. While addressed in mesocosms, these hypotheses have not been tested in the field with manipulative experimentation. This study examines the effects of in situ CO2(aq) enrichment on the structural and chemical characteristics of the tropical seagrass, Thalassia testudinum. CO2(aq) availability was manipulated for 6 months in clear, open-top chambers within a shallow seagrass meadow in the Florida Keys (USA), reproducing forecasts for the year 2100. Structural characteristics (leaf area, leaf growth, shoot mass, and shoot density) were unresponsive to CO2(aq) enrichment. However, leaf nitrogen and phosphorus content declined on average by 11 and 21 %, respectively. Belowground, non-structural carbohydrates increased by 29 %. These results indicate that increased CO2(aq) availability may primarily alter the chemical composition of seagrasses, influencing both the nutrient status and resilience of these systems.  相似文献   
142.
143.
With research into the ecological effects of climatic change intensifying over the past decade, there has been an effort to increase the scale of experiments from a focus on individual organisms to incorporate the effects of the structure and functioning of entire ecosystems. As the scale of investigation becomes increasingly broad, however, the number of seemingly contradictory outcomes also increases. In reality, however, change or persistence of ecological patterns represents interplay of processes across diverse scales of space and time. At one extreme, non-climatic influences can dominate local and short-term processes that protect systems against change or accelerate change. Here, we draw on case studies that demonstrate such contrasting situations, presenting examples where local conditions can either ameliorate or exacerbate the predicted effects of climate change. By incorporating examples of stressors that originate and manifest at different spatial scales, we also attempt to refine some of the efforts surrounding research into the effects of climate change.  相似文献   
144.
Biodiversity may provide insurance against ecosystem collapse by stabilizing assemblages that perform particular ecological functions (the "portfolio effect"). However, the extent to which this occurs in nature and the importance of different mechanisms that generate portfolio effects remain controversial. On coral reefs, herbivory helps maintain coral dominated states, so volatility in levels of herbivory has important implications for reef ecosystems. Here, we used an extensive time series of abundances on 35 reefs of the Great Barrier Reef of Australia to quantify the strength of the portfolio effect for herbivorous fishes. Then, we disentangled the contributions of two mechanisms that underlie it (compensatory interactions and differential responses to environmental fluctuations ["response diversity"]) by fitting a community-dynamic model that explicitly includes terms for both mechanisms. We found that portfolio effects operate strongly in herbivorous fishes, as shown by nearly independent fluctuations in abundances over time. Moreover, we found strong evidence for high response diversity, with nearly independent responses to environmental fluctuations. In contrast, we found little evidence that the portfolio effect in this system was enhanced by compensatory ecological interactions. Our results show that portfolio effects are driven principally by response diversity for herbivorous fishes on coral reefs. We conclude that portfolio effects can be very strong in nature and that, for coral reefs in particular, response diversity may help maintain herbivory above the threshold levels that trigger regime shifts.  相似文献   
145.
Marine reserves have become widely used in biodiversity conservation and are increasingly proposed as fisheries management tools. Previous modeling studies have found that reserves may increase or decrease yields, depending on local environmental conditions and on the specific life-history traits of the fishery species. Sex-changing (female-to-male) fish are targets of some of the most important commercial and recreational fisheries in the world. The potential for disproportionate removal of the larger, older sex of such species requires new theory to facilitate our understanding of how reserves will affect the yields of surrounding fisheries, relative to fishes with separate sexes. We investigated this question by modeling the effects of marine reserves on a non-sex-changing and a sex-changing population. We used demographic parameter estimates for the common coral trout as a baseline, and we conducted extensive sensitivity analyses to determine how sustainable yields of sex-changing species are likely to be affected by reserves across a broad range of life-history parameters. Our findings indicate that fisheries for sex-changing species are unlikely to receive the same yield-enhancing benefit that non-sex-changing fisheries enjoy from marine reserves, and that often reserves tend to reduce sustainable yields for a given overall population size. Specifically, the increased egg production and high fertilization success within reserves is more than offset by the reduced egg production and fertilization success in the fished areas, relative to a system in which fishing mortality is distributed more evenly over the entire system. A key reason for this appears to be that fertilization success is reduced, on average, when males are unevenly distributed among subpopulations, as is the case when reserves are present. These findings suggests that, for sex-changing populations, reserves are more suited to rebuilding overfished populations and sustaining fishery viability, rather than enhancing fishery yields. These results are robust over a range of sex-change regimes, stock-recruitment relationships, adult mortality rates, individual growth strategies, and fertilization-success functions. Our findings highlight the importance of considering the different contributions of males and females to population growth and fishery yields when evaluating the efficacy of marine reserves for enhancement of fished species.  相似文献   
146.
Larvae of many sessile marine invertebrates settle in response to surface microbial communities (biofilms), but the effects of soluble compounds from biofilms in affecting larval behavior prior to settlement, attachment, and metamorphosis have been little studied. This question was addressed by videotaping the behavior of competent larvae of the serpulid, Hydroides elegans, above settlement-inducing biofilms. Adult worms were collected in Pearl Harbor, Hawaii, USA in November 2012 and spawned almost immediately. Six-day old larvae were placed in five replicated treatments in small cups: (1) with a natural biofilm; (2) with a natural biofilm on an 8-µm screen, 1 mm above the bottom of a clean cup; (3) with a natural biofilm beneath a clean screen; (4) in a clean cup; and (5) in a clean cup with a clean screen. Using the videotapes, larval swimming speeds and trajectories were quantified within 5 min of the larvae being placed in a treatment. Only larvae that touched a biofilm, i.e., in treatments (1) and (2), slowed their swimming speed and increased the amount of time spent crawling rather than swimming. This shows that under these conditions, any soluble cues emanating from a biofilm do not affect settlement behavior. Furthermore, after 24 h close to 100 % of larva in the two accessible biofilm treatments had metamorphosed and <15 % in treatments that included a biofilm under a clean screen and no biofilm at all, strongly suggesting that soluble cues for settlement were not produced by the biofilms over the longer time period.  相似文献   
147.
Adaptive brain architecture hypotheses predict brain region investment matches the cognitive and sensory demands an individual confronts. Social hymenopteran queen and worker castes differ categorically in behavior and physiology leading to divergent sensory experiences. Queens in mature colonies are largely nest-bound while workers depart nests to forage. We predicted social paperwasp castes would differ in tissue allocation among brain regions. We expected workers to invest relatively more than queens in neural tissues that process visual input. As predicted, we found workers invested more in visual relative to antennal processing than queens both in peripheral sensory lobes and in central processing brain regions (mushroom bodies). Although we did not measure individual brain development changes, our comparative data provide a preliminary test of mechanisms of caste differences. Paperwasp species differ in the degree of caste differentiation (monomorphic versus polymorphic castes) and in colony structure (independent- versus swarm-founding); these differences could correspond to the magnitude of caste brain divergence. If caste differences resulted from divergent developmental programs (experience-expectant brain growth), we predicted species with morphologically distinct queens, and/or swarm-founders, would show greater caste divergence of brain architecture. Alternatively, if adult experience affected brain plasticity (experience-dependent brain growth), we predicted independent-founding species would show greater caste divergence of brain architecture. Caste polymorphism was not related to the magnitude of queen-worker brain differences, and independent-founder caste brain differences were greater than swarm-founder caste differences. Greater caste separation in independent-founder brain structure suggests a role for adult experience in the development of caste-specific brain anatomy.  相似文献   
148.
Few predators forage by both day and night. It remains unknown, however, how the costs and benefits of foraging or signaling are partitioned in animals that forage at all times. The orb-web spider Cyrtophora moluccensis is brightly colored and forages by day and night. We determined the benefits reaped when it forages by both day and night by estimating the biomass of prey caught in their webs. Additionally, we quantified whether the spider’s presence influences the number of prey caught by day and night and whether its colorful body is visible to diurnal and/or nocturnal insects using diurnal and nocturnal insect vision models. We found that approximately five times the biomass of prey was caught in C. moluccensis’ webs by night than by day. Hemipterans, hymenopterans, and dipterans were predominantly caught by day, while lepidopterans (moths) were predominately caught by night. Accordingly, we concluded that foraging by night is more profitable than foraging by day. We predicted that other benefits, for example, energetic advantages or enhanced fecundity, may promote its daytime activity. Foraging success was greater by day and night when the spider was present in the web than when the spider was absent. We also found that parts of the spider’s body were conspicuous to diurnal and nocturnal insects, possibly through different visual channels. The colorful body of C. moluccensis, accordingly, appears to influence its foraging success by attracting prey during both the day and night.  相似文献   
149.
Wet grassland populations of wading birds in the United Kingdom have declined severely since 1990. To help mitigate these declines, the Royal Society for the Protection of Birds has restored and managed lowland wet grassland nature reserves to benefit these and other species. However, the impact of these reserves on bird population trends has not been evaluated experimentally due to a lack of control populations. We compared population trends from 1994 to 2018 among 5 bird species of conservation concern that breed on these nature reserves with counterfactual trends created from matched breeding bird survey observations. We compared reserve trends with 3 different counterfactuals based on different scenarios of how reserve populations could have developed in the absence of conservation. Effects of conservation interventions were positive for all 4 targeted wading bird species: Lapwing (Vanellus vanellus), Redshank (Tringa totanus), Curlew (Numenius arquata), and Snipe (Gallinago gallinago). There was no positive effect of conservation interventions on reserves for the passerine, Yellow Wagtail (Motacilla flava). Our approach using monitoring data to produce valid counterfactual controls is a broadly applicable method allowing large-scale evaluation of conservation impact.  相似文献   
150.

Background

Semi-natural plant communities such as field boundaries play an important ecological role in agricultural landscapes, e.g., provision of refuge for plant and other species, food web support or habitat connectivity. To prevent undesired effects of herbicide applications on these communities and their structure, the registration and application are regulated by risk assessment schemes in many industrialized countries. Standardized individual-level greenhouse experiments are conducted on a selection of crop and wild plant species to characterize the effects of herbicide loads potentially reaching off-field areas on non-target plants. Uncertainties regarding the protectiveness of such approaches to risk assessment might be addressed by assessment factors that are often under discussion. As an alternative approach, plant community models can be used to predict potential effects on plant communities of interest based on extrapolation of the individual-level effects measured in the standardized greenhouse experiments. In this study, we analyzed the reliability and adequacy of the plant community model IBC-grass (individual-based plant community model for grasslands) by comparing model predictions with empirically measured effects at the plant community level.

Results

We showed that the effects predicted by the model IBC-grass were in accordance with the empirical data. Based on the species-specific dose responses (calculated from empirical effects in monocultures measured 4 weeks after application), the model was able to realistically predict short-term herbicide impacts on communities when compared to empirical data.

Conclusion

The results presented in this study demonstrate an approach how the current standard greenhouse experiments—measuring herbicide impacts on individual-level—can be coupled with the model IBC-grass to estimate effects on plant community level. In this way, it can be used as a tool in ecological risk assessment.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号