首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   1篇
  国内免费   1篇
安全科学   5篇
废物处理   4篇
环保管理   3篇
综合类   14篇
基础理论   17篇
污染及防治   58篇
评价与监测   10篇
社会与环境   11篇
  2023年   3篇
  2022年   20篇
  2021年   10篇
  2020年   8篇
  2019年   11篇
  2018年   6篇
  2017年   9篇
  2016年   5篇
  2015年   7篇
  2014年   5篇
  2013年   14篇
  2012年   5篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2003年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
101.
Environmental Science and Pollution Research - Atmospheric contamination by heavy metal(loid)s is a widespread global issue. Recent studies have shown foliar pathway of heavy metal(loid) uptake by...  相似文献   
102.
Environmental Science and Pollution Research - Lithium (Li) exploitation for industrial and domestic use is resulting in a buildup of the element in various environmental components that results in...  相似文献   
103.
Environmental Science and Pollution Research - The freely and abundantly available amphibious plant Indian pennywort Bacopa monnieri (L.) Pennell was able to phytoremediate sewage (greywater)...  相似文献   
104.
Natural colors particularly animal-based colorants are employed in the field of cosmetics, food, and flavors and also gaining popularity in textiles, due to their soothing nature. In this study, the microwave-assisted extraction of colorant from cochineal insects for dyeing of bio-mordanted silk has been carried out. Acidic, methanolic, and acidified methanol solubilized media were used to extract the natural colorant from cochineal under microwave irradiation for 1–6 min. Bio-mordants have been employed at optimized conditions to make the process greener and sustainable. It is found that acid solubilized extract of pH 4, employed at 55 °C for 55 min containing 5 g/100 mL of Glauber’s salt as exhausting agent has given high color strength onto microwave-treated silk fabric. Suggested ISO standards for colorfastness have revealed that bio-mordants have given excellent color depth and excellent rating of fastness properties, compared with chemical mordants used. It is found that microwave treatment has not only improved the dyeing behavior of colorant extracted from cochineal in acid solubilized medium but also enhanced the color characteristics onto bio-mordanted silk fabric.  相似文献   
105.
Environmental Science and Pollution Research - This research article examines the impact of stock market capitalization on carbon emissions using forty high carbon-emitting countries from 1996 to...  相似文献   
106.
Environmental Science and Pollution Research - Revival of natural colorants in textile dyeing is one of the important strategies to reduce synthetic chemical-based environmental pollution. The...  相似文献   
107.
Environment, Development and Sustainability - Since 2015, the United Nations sustainable development goals (SDGs) agenda 2030 has been designed with 17 goals, 169 targets, and 232 unique indicators...  相似文献   
108.
This paper describes an ecofriendly development of a nanodrug delivery vehicle from seed oil. The entire synthesis, starting from the ZnO nanoparticle to the polymeric vehicle is purely microwave assisted with minimal usage of organic solvents. Multifunctional features like enhanced UV absorbance, antimicrobial properties and appreciable in vitro release can be attributed to the nanoparticle loaded polymeric vehicle. Characterization of the synthesized species was done through FT-IR, 1HNMR, SEM and XRD. The physical characterizations were carried out using conventional laboratory techniques.  相似文献   
109.

Atmospheric contamination by heavy metal(loid)–enriched particulate matter (metal-PM) is highly topical these days because of its high persistence, toxic nature, and health risks. Globally, foliar uptake of metal(loid)s occurs for vegetables/crops grown in the vicinity of industrial or urban areas with a metal-PM-contaminated atmosphere. The current study evaluated the foliar uptake of arsenic (As), accumulation of As in different plant organs, its toxicity (in terms of ROS generation, chlorophyll degradation, and lipid peroxidation), and its defensive mechanism (antioxidant enzymes) in spinach (Spinacia oleracea) after foliar application of As in the form of nanoparticles (As-NPs). The As-NPs were prepared using a chemical method. Results indicate that spinach can absorb As via foliar pathways (0.50 to 0.73 mg/kg in leaves) and can translocate it towards root tissues (0.35 to 0.68 mg/kg). However, health risk assessment parameters showed that the As level in the edible parts of spinach was below the critical limit (hazard quotient <?1). Despite low tissue level, As-NP exposure caused phytotoxicity in terms of a decrease in plant dry biomass (up to 84%) and pigment contents (up to 38%). Furthermore, several-fold higher activities of antioxidant enzymes were observed under metal stress than control. However, no significant variation was observed in the level of hydrogen peroxide (H2O2), which can be its possible transformation to other forms of reactive oxygen species (ROS). It is proposed that As can be absorbed by spinach via foliar pathway and then disturbs the plant metabolism. Therefore, air quality needs to be considered and monitored continuously for the human health risk assessment and quality of vegetables cultivated on polluted soils (roadside and industrial vicinity).

?

  相似文献   
110.
A framework is proposed for forecasting industrial water demand in the context of climate change, economic growth, and technological development. The framework was tested in five sub-basins of Huaihe River of China, namely Upstream of Huaihe River (UH), Middlestream of Huaihe River (MH), Downstream of Huaihe River (DH), Yishusi River (YSSR), and Coastal River of Shandong Peninsula (CSP) to project future changes in industrial water demand under different environment change scenarios. Results showed that industrial water demand in Huaihe River basin will increase in the range of 10 to 44.6% due to economic development, water-saving technological advances, and climate change. The highest increase was projected by general circulation model (GCM) BCC-CSM1–1 (179.16 × 108 m3) and the lowest by GCM GISS-E2-R (132.4 × 108 m3) in 2020, while the GCM BNU-ESM projected the highest increase (190.57 × 108 m3) and GCM CNRM-CM5 the lowest (160.41 × 108 m3) in 2030. Among the different sub-basins, the highest increase was projected in MH sub-basin where industrial water demand is already very high. On the other hand, the lowest increase in industrial water demand was projected in UH sub-basin. The rapid growth of high water-consuming industries and increased water demand for cooling due to temperature rise are the major causes of the sharp increase in industrial water demand in the basin. The framework developed in the study can be used for reliable forecasting of industrial water demand which in turn can help in selection of an appropriate water management strategy for adaptation to global environmental changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号