首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
环保管理   2篇
综合类   1篇
基础理论   1篇
污染及防治   8篇
评价与监测   1篇
社会与环境   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2007年   1篇
  2006年   1篇
  2001年   1篇
  1998年   1篇
  1984年   4篇
  1982年   1篇
  1981年   1篇
排序方式: 共有15条查询结果,搜索用时 0 毫秒
11.
MR Cull  AJ Dobbs 《Chemosphere》1984,13(9):1085-1089
The results of analyses for polychlorodibenzofuran (PCDF) content in two samples of polychlorobiphenyl (PCB) from used electrical transformers are presented and discussed. In neither sample was there evidence for enhanced PCDF concentrations even though one of them had been subjected to overheating while in service.  相似文献   
12.
Model continuous activated sludge (CAS) plants (Husmann units) were used to study the fate of two commercial, alcohol ethoxylate (AE) surfactants during aerobic sewage treatment. The surfactants were produced by the ethoxylation of an essentially linear C(12-15) alcohol (NEODOL 25) with an average of 7 (C(12-15)EO7) or 3 (C(12-15)EO3) moles of ethylene oxide (EO). Recent analytical developments made it possible to measure levels of AE that included the free alcohol and EO1 oligomers across the CAS system, from the influent feed, on the activated sludge, through to the effluent. Measured concentrations of AE (as C(12-15)EO(0-20)) in the synthetic sewage feeds to the test CAS plants lay in the range 11-13 mg/l. During stable operation at 20 degrees C, an average of 5 microg/l AE were present in the C(12-15)EO7 CAS plant effluent, giving a removal (bioelimination) of >99.9%. When levels of AE on the sludge, and polyethylene glycols (PEGs--an expected biodegradation intermediate) in the effluent and on the sludge were also taken into account, biodegradation was considered to be responsible for >98.7% of the observed removal. During operation at a winter temperature (10 degrees C), an average of 26 microg/l AE were present in the C(12-15)EO7 CAS plant effluent, giving a removal of 99.8%. Biodegradation was estimated to be responsible for >97.2% of the observed removal. During operation at 20 degrees C, an average of 7 microg/l AE were present in the C(12-15)EO3 CAS plant effluent, giving a removal of >99.9%. No analysis for PEG was performed in this case but the low level of AE on the sludge (0.2 mg/g dry solids) suggested that biodegradation was responsible for most of the observed removal. Neither surfactant had any adverse effect on the sewage treatment efficiencies of the CAS plants in terms of dissolved organic carbon (DOC) removal, nitrification or biomass levels.  相似文献   
13.
MR Cull  AJ Dobbs 《Chemosphere》1984,13(9):1091-1099
Wood samples treated with technical pentachlorophenol (PCP), technical sodium pentachlorophenoxide (NaPCP) and octachlorodibenzo-p-dioxin have been exposed outdoors for periods up to 212 years. Analysis of extracts from the samples show that photolytic reductive dechlorination of highly chlorinated dibenzo-p-dioxins to less chlorinated isomers occurs. However there is no discernible increase in polychlorodibenzo-p-dioxin concentrations in the technical PCP treated wood presumably because further photolytic reactions and volatilisation compete effectively with the photolytic formation. There is no evidence for formation of octachlorodibenzo-p-dioxin (OCDD) in technical PCP treated wood in this study, probably because photolytic destruction and volatilisation compete effectively with formation reactions when the initial OCDD concentration is relatively high.  相似文献   
14.
AJ Dobbs  LJ Tavener 《Chemosphere》1982,11(4):465-470
The activity of a chemical in solution determines its tendency to move into other media. At low concentrations (<0.01M) it is generally considered to be linearly related to concentration. A hypothetical model based on the structure of liquid water is discussed which could cause deviations from this linearity in the ppb region, a concentration much lower than that normally investigated thermodynamically, but one of great importance environmentally. Headspace experiments are reported with carbon tetrachloride and chloroform in water at concentrations down to ~10?3 ppb but no such deviations were discerned.  相似文献   
15.
A feasible and relatively readily available analytical method was adapted for the assessment of alcohol ethoxylates (AE) and fatty alcohols (FA) in sediments. This study illustrates the simultaneous measurement of 38 of 114 possible alcohol ethoxylate ethoxymers (AE) and fatty alcohols (FA) found in commercially important AE products. We predicted toxicity for all identified fractions, as well as the total mixture toxicity, relative to three exposure scenarios via sewage treatment plants (STP) for these widely used chemicals in consumer products and hence generate a preliminary environmental risk screening for AE and FA in sediments. The method is based on derivatization of solvent or solid-phase extracts with 2-fluoro-N-methylpyridinium p-toluenesulfonate (Pyr+). The derivatized extracts were analyzed with liquid chromatography/mass spectrometry (LC/MS) operating in the positive ion electrospray mode. The extraction efficiency of AE and FA in three different sediments of varying composition was evaluated with spike-recovery studies, ranging from 64% to 80%. The detection limits for individual ethoxymers typically ranged from 1 to 5ngg−1on a dry weight basis. The mean limit of detection (LOD) was 6ngg−1and the median LOD was 3ngg−1. AE and FA in sediments were found to be stable for two weeks if preserved with 3% (v/v) formalin and stored at 4–6C. Based on equilibrium partitioning, background concentrations of AE and FA were predicted to be below concentrations known to elicit chronically toxic effects. Total worst case mixture toxicities for all AE ethoxymers combined with FA were predicted to result in a risk quotient less than 0.6. Activated sludge treatment (STP) significantly reduced the release of total AE and FA by four-fold, suggesting that the total mixture risk quotient would be < 0.15 for sediment dependent organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号