首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   736篇
  免费   52篇
  国内免费   185篇
安全科学   83篇
废物处理   45篇
环保管理   55篇
综合类   363篇
基础理论   106篇
污染及防治   227篇
评价与监测   34篇
社会与环境   39篇
灾害及防治   21篇
  2023年   16篇
  2022年   52篇
  2021年   39篇
  2020年   36篇
  2019年   25篇
  2018年   31篇
  2017年   37篇
  2016年   42篇
  2015年   49篇
  2014年   43篇
  2013年   62篇
  2012年   69篇
  2011年   64篇
  2010年   47篇
  2009年   47篇
  2008年   45篇
  2007年   47篇
  2006年   30篇
  2005年   21篇
  2004年   23篇
  2003年   18篇
  2002年   25篇
  2001年   25篇
  2000年   7篇
  1999年   10篇
  1998年   13篇
  1997年   10篇
  1996年   8篇
  1995年   6篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   5篇
  1989年   2篇
  1988年   5篇
  1987年   2篇
  1984年   1篇
  1982年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有973条查询结果,搜索用时 15 毫秒
71.
Subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, in this study, a new cumulative calculation method for the estimation of total amounts of indoor air pollutants emitted inside the subway station is proposed by taking cumulative amounts of indoor air pollutants based on integration concept. Minimum concentration of individual air pollutants which naturally exist in indoor space is referred as base concentration of air pollutants and can be found from the data collected. After subtracting the value of base concentration from data point of each data set of indoor air pollutant, the primary quantity of emitted air pollutant is calculated. After integration is carried out with these values, adding the base concentration to the integration quantity gives the total amount of indoor air pollutant emitted. Moreover, the values of new index for cumulative indoor air quality obtained for 1 day are calculated using the values of cumulative air quality index (CAI). Cumulative comprehensive indoor air quality index (CCIAI) is also proposed to compare the values of cumulative concentrations of indoor air pollutants. From the results, it is clear that the cumulative assessment approach of indoor air quality (IAQ) is useful for monitoring the values of total amounts of indoor air pollutants emitted, in case of exposure to indoor air pollutants for a long time. Also, the values of CCIAI are influenced more by the values of concentration of NO2, which is released due to the use of air conditioners and combustion of the fuel. The results obtained in this study confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well.

Implications: Nowadays, subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in the indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, this paper presents a new methodology for monitoring and assessing total amounts of indoor air pollutants emitted inside underground spaces and subway stations. A new methodology for the calculation of cumulative amounts of indoor air pollutants based on integration concept is proposed. The results suggest that the cumulative assessment approach of IAQ is useful for monitoring the values of total amounts of indoor air pollutants, if indoor air pollutants accumulated for a long time, especially NO2 pollutants. The results obtained here confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well.  相似文献   
72.
为了提高污泥水解酸化过程中的挥发酸产量,获取污水脱氮除磷所需的内碳源,以深圳市罗芳污水厂的二沉池污泥为研究对象,采用不同的碱量对其进行预处理。通过测定碱预处理污泥水解酸化过程中的挥发酸浓度,并采用聚合酶链式反应-变性梯度凝胶电泳(polymerase chain reaction denature gradient gel electrophoresis,PCR-DGGE)技术对参与碱预处理污泥水解酸化产酸过程的主要微生物种群进行分析,结果表明,当碱投加量为0.20 g NaOH/g VSS时,初始溶出的蛋白浓度为1 780 mg/L;水解酸化15 d时,挥发酸总量达到3 473 mg/L;参与产酸的主要细菌属于Firmicutes、Proteobacteria、Bacteroidetes三个门类。  相似文献   
73.
In this study, the physicochemical properties of the char of Indonesian SM coal following heat treatment at various temperatures were evaluated using X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and morphological and specific surface area analysis. Based on these analyses, heat treatment of coal was determined to be the most effective in increasing the coal rank. In the XPS analysis, the C-O and C-O-C groups and quaternary-N species were found to be of a lower grade coal when the pretreatment temperature decreased, meanwhile the C-C group and pyridinic species increased. In the FT-IR analysis, the collapse of the C-O and C-O-C group was observed due to the collapse of the ether group. In SEM and Brunauer-Emmett-Teller (BET) analysis, a decrease in the ether group was shown to be accompanied with the formation of micropores.  相似文献   
74.
通过对生物倍增工艺处理市政污水的沿程污染物降解规律的考察表明,工艺对有机物的去除效果显著,COD和BOD5出水分别为47.80 mg/L和19.80 mg/L;氨氮去除率可达100%。发现厌氧区提前发生反硝化并一定程度上影响系统除磷效果;通过对各主要影响因素进行分析,认为低碳源的进水条件是影响系统同步脱氮除磷效果的关键因素;提出在进水口直接添加碳源以及分点进水的碳源分配+辅助化学除磷的方式可强化氮磷去除效果。  相似文献   
75.
Cadmium tolerance in six poplar species   总被引:5,自引:1,他引:4  
Selection of poplar species with greater Cd tolerance and exploiting the physiological mechanisms involved in Cd tolerance are crucial for application of these species to phyto-remediation. The aim of this study is to investigate variation in Cd tolerance among the six poplar species and its underlying physiological mechanisms. Cuttings of six Populus species were cultivated for 10 weeks before exposure to either 0 or 200 μM CdSO4 for 20 days. Gas exchange in mature leaves was determined by a portable photosynthesis system. Cd concentrations in tissues were analyzed by a flame atomic absorbance spectrometry. Subsequently, Cd amount per plant, bio-concentration factor (BCF) and translocation factor (T f) were calculated. Nonenzymatic compounds and activities of antioxidative enzymes in tissues were analyzed spectrophotometrically. Cd exposure caused decline in photosynthesis in four poplar species including Populus cathayana (zhonghua 1). Among the six species, P. cathayana (zhonghua 1) displayed the highest Cd concentrations in tissues, the largest Cd amount in aerial parts, the highest BCF in aerial parts and T f under Cd exposure. Under Cd stress, increases in total soluble sugars in roots but decreases in starch in roots, wood, and leaves of P. cathayana (zhonghua 1) were found. Induced O 2 ?? and H2O2 production in roots and leaves, and increases in free proline, soluble phenolics, and activities of antioxidative enzymes were observed in P. cathayana (zhonghua 1). Based on results of this pot experiment, it is concluded that P. cathayana (zhonghua 1) is superior to other five species for Cd phyto-remediation, and its well-coordinated physiological changes under Cd exposure confer the great Cd tolerance of this species.  相似文献   
76.
Human exposure to bioaccessible PCBs via indoor dust is limited around the world. In the present study, the workplace dust sample from commercial office, hospital, secondary school, shopping mall, electronic factory and manufacturing plant were collected from Hong Kong for PCBs analyses. Total PCBs concentrations ranged from 46.8 to 249 ng g−1, with a median of 107 ng g−1. Manufacturing plant showed the highest concentration among all of sampling sites. PCB 77 was found as the dominant congeners. The bioaccessibility of PCBs in small intestinal juice ranging from 8.3% to 26.0% was significantly higher than that in gastric condition, ranging from 4.8% to 12.4%. In addition, significant negative correlations (p < 0.05) were observed between KOW and bioaccessibility for all workplace dust samples. Risk assessment indicated that the averaged daily dose of dioxin-like PCBs via non-dietary intake of workplace dust, considering the bioaccessibility of PCBs, were much lower than the TDI of dioxins (2.3 pg WHO-TEQ kg bw−1 d−1) established by Joint FAO/WHO Expert Committee on Food Additives.  相似文献   
77.
方崇林  康奇民  张振菊 《安全》2008,29(7):26-27
本文论述了如何预防和消除煤矿作业人员的不安全行为,克服职工不健康的心理状态,改善作业环境,实行作业标准化和对作业人员的技能培训。  相似文献   
78.
通过把起相转移作用的聚乙二醇链固载在硅胶上(SiO2-PEG600),再将聚乙稀吡咯烷酮(PVP)络合双金属Pd-Cu(PVP-PdCl2-CuCl2)后负载其中,制成一种新型双负载双金属水相脱卤催化剂PVP-PdCl2-CuCl2/SiO2-PEG600。以甲酸钠为氢转移试制,在水相中催化有机卤化物脱卤,研究结果表明:反应温度为800℃,Pd∶Cu=2∶1(摩尔比),反应介质pH≈11.7左右时,该催化剂对芳香氯化物及α-氯代酮、酯具有良好的催化脱氯和重复使用性能。  相似文献   
79.
周珊  康君行  黄骏雄 《环境化学》2001,20(2):191-195
用固相微苹取(SPME)-气相色谱/质谱联用法测定饮用水中苯类化合物,以100μm PDMS(聚二甲基硅氧烷)萃取针提取、浓缩、分离与测定九种目标化合物.萃取时间经优化选定为8min,而热解析时间设定为2min. 本方法的相对标准偏差小于5%,线性范围宽(20ng·ml-1-10000ng·ml-1),多数化合物的检测限低于5μg·l-1.饮用水样品检测显示,样品加标回收率范围在84%至110%内.  相似文献   
80.
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analyzed in agricultural soil samples from Shanghai to determine levels and to identify possible dioxin sources. The dioxin level was measured by an enzyme immunoassay method, US EPA 4025 (modified), which provides results as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalents. The Method 4025m results obtained from 60 soil samples displayed a normal distribution, ranging from 2.8 to 23.4 pg/g 2378-TCDD-equvalents, with an average of 11.0 pg/g. The result also revealed a similar PCDD/Fs concentration among crop usage patterns, but differences by geographic region, low in the southwest of Shanghai and considerably higher in the northwest region. In contrast, the dioxin concentrations on Chongming Island were fairly homogeneous, with a range 10–15 pg/g. This immunoassay method is an effective high throughput screening tool which helps to minimize the need for more expensive analyses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号