首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2244篇
  免费   218篇
  国内免费   772篇
安全科学   179篇
废物处理   137篇
环保管理   169篇
综合类   1240篇
基础理论   455篇
污染及防治   756篇
评价与监测   80篇
社会与环境   59篇
灾害及防治   159篇
  2024年   21篇
  2023年   70篇
  2022年   139篇
  2021年   111篇
  2020年   63篇
  2019年   73篇
  2018年   79篇
  2017年   107篇
  2016年   141篇
  2015年   171篇
  2014年   161篇
  2013年   226篇
  2012年   179篇
  2011年   190篇
  2010年   149篇
  2009年   126篇
  2008年   152篇
  2007年   121篇
  2006年   107篇
  2005年   76篇
  2004年   63篇
  2003年   77篇
  2002年   62篇
  2001年   60篇
  2000年   59篇
  1999年   79篇
  1998年   61篇
  1997年   57篇
  1996年   50篇
  1995年   50篇
  1994年   27篇
  1993年   38篇
  1992年   31篇
  1991年   26篇
  1990年   14篇
  1989年   4篇
  1988年   6篇
  1987年   2篇
  1984年   3篇
  1981年   2篇
  1958年   1篇
排序方式: 共有3234条查询结果,搜索用时 15 毫秒
151.
Air sparging (AS) is one of the groundwater remediation techniques for remediating volatile organic compounds (VOCs) in saturated soil. However, in spite of the success of air sparging as a remediation technique for the cleanup of contaminated soils, to date, the fundamental mechanisms or the physics of air flow through porous media is not well understood. In this study, centrifugal modeling tests were performed to investigate air flow rates and the evolution of the zone of influence during the air sparging under various g-levels. The test results show that with the increase in sparging pressure the mass flow rate of the air sparging volume increases. The air mass flow rate increases linearly with the effective sparging pressure ratio, which is the difference between sparging pressure and hydrostatic pressure normalized with respect to the effective overburden pressure at the sparging point. Also the slope of mass flow rate with effective sparging pressure ratio increases with higher g-levels. This variation of the slope of mass flow rate of air sparging volume versus effective sparging pressure ratio, M, is linear with g-level confirming that the air flow through soil for a given effective sparging pressure ratio only depends on the g-level. The test results also show that with increasing sparging pressure, the zone of influence (ZOI), which consists of the width at the tip of the cone or lateral intrusion and the cone angle, will lead to an increase in both lateral intrusion and the cone angle. With a further increase in air injection pressure, the cone angle reaches a constant value while the lateral intrusion becomes the main contributor to the enlargement of the ZOI. However, beyond a certain value of effective sparging pressure ratio, there is no further enlargement of the ZOI.  相似文献   
152.
Aerosol size distributions, trace gas, and PM(2.5) concentrations have been measured in urban Jinan, China, over 6 months in 2007 and 2008, covering spring, summer, fall, and winter time periods. Number concentrations of particles (10-2,500 nm) were 16,200, 13,900, 11,200, and 21,600 cm(?-3) in spring, summer, fall, and winter, respectively. Compared with other urban studies, Jinan has higher number concentrations of accumulation-mode particles (100-500 nm) and particles (10-2,500 nm), but lower concentrations of ultrafine particles (10-100 nm). The number, surface and volume concentrations, and size distributions of particles showed obvious seasonal variation and are also influenced by traffic emissions. Through correlation analysis, traffic emissions are proposed to be a more important contributor to Atkien-mode and accumulation-mode particles than coal firing. Around midday, the presence of nanoparticles and new particle formation is limited to pre-existing particles from traffic emissions and the mass transport of particles from suburban and rural areas. Compared with other studies in urban areas of Europe and the USA, the variation of particle number concentration and related gas concentration in Jinan between weekdays and weekends is smaller and the reasons has been deduced.  相似文献   
153.
Phosphine (PH(3)) is a natural gaseous carrier of phosphorus (P) in its geochemical cycles, and it might be important to the P balance of natural ecosystems. Paddy fields are thought to be one of the main sources responsible for the production and emission of PH(3) in to the environment. The relationships between matrix-bound PH(3) (MBP) and different P fractions, as well as selected metals were investigated to explore the possible production of MBP and its link to P cycle in the paddy soils. MBP range from 20.8 (-1) to 502 ng kg(-1) with an average of 145 ng kg(-1). Concentrations at the milk stage are significantly higher than at the jointing stage. The total P range from 333 mg kg(-1) to 592 mg kg(-1). Average P fractions decrease in the order: Ca-P (69.9%) > Organic P (16.5%) > occluded P (6.50%) > Fe-P (5.93%) > dissolved P (0.80%) > exchangeable P (0.32%) > Al-P (0.02%). Different levels of nitrogen fertilizer have little effect on the contents of MBP, P fractions and metals. A significant positive correlation between MBP and Ca-P (p = 0.002), as well as between MBP and Ca (p = 0.008) could be observed, suggesting that Ca-P mainly affects the production of MBP in the paddy soils. It is suggested that soil MBP is strongly linked to Ca-P fertilizer use because soil spiked with P-fertilizer produced an additional 758 ± 142 ng of MBP per kg of soil, compared to only 81.7 ± 12.3 ng of MBP per kg of unspiked soil. No correlations are found between MBP and other P fractions, or between MBP and Al, Fe and Mn.  相似文献   
154.
从实验室试验和工业性试验出发, 煤矸石制非烧结砖的可行性。研究结果表明,用煤矸石和适量固化剂制成的非绕结砖经过28d自然养护后,其质量和放射性均符合国家有关标准。利用煤矸石非烧砖无 技术上还是经济上都是可行和有利的。  相似文献   
155.
根据塔里木油田1993-1996年环境空气监测数据,对其环境空气质量状况进行了分析和评价。  相似文献   
156.
灰色系统模型在总悬浮物预测中的应用   总被引:1,自引:0,他引:1  
以1986-1994年东北某城市总悬浮物统计资料为依据,应用灰色系统理论GM(1,1)模型对总量浮物数值进行预测分析。  相似文献   
157.

Purpose

With the aim of enhanced degradation of azo dye alizarin yellow R (AY) and further removal of the low-strength recalcitrant matter (LsRM) of the secondary effluent as much as possible, our research focused on the combination of aerobic bio-contact oxidation (ABO) with iron/carbon microelectrolysis (ICME) process.

Materials and methods

The combined ABO (with effective volume of 2.4?l) and ICME (with effectively volume of 0.4?l) process were studied with relatively short hydraulic retention time (HRT) of 4 or 6?h.

Results

At the HRT of 6?h with the reflux ratio of 1 and 2, the AY degradation efficiency in the final effluent was >96.5%, and the total organic carbon (TOC) removal efficiency were 69.86% and 79.44%, respectively. At the HRT of 4?h and the reflux ratio of 2, TOC removal efficiency and AY degradation efficiency were 73.94% and 94.89%, respectively. The ICME process obviously enhanced the total AY removal and the generated micromolecule acids and aldehydes then that wastewater backflow to the ABO where they were further biodegraded.

Conclusion

The present research might provide the potential options for the advanced treatment azo dyes wastewater with short HRT and acceptable running costs.  相似文献   
158.
The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50%, and 70% RH). The "green" materials contained recycled materials and were friendly to environment. A dynamic dual-chamber test method was used. Results showed that a higher relative humidity led to a larger effective diffusion coefficient for two kinds of wallboards and carpet. The carpet was also found to be very permeable resulting in an effective diffusion coefficient at the same order of magnitude with the formaldehyde diffusion coefficient in air. The partition coefficient (K(ma)) of formaldehyde in conventional wallboard was 1.52 times larger at 50% RH than at 20% RH, whereas it decreased slightly from 50% to 70% RH, presumably due to the combined effects of water solubility of formaldehyde and micro-pore blocking by condensed moisture at the high RH level. The partition coefficient of formaldehyde increased slightly with the increase of relative humidity in "green" wallboard and "green" carpet. At the same relative humidity level, the "green" wallboard had larger partition coefficient and effective diffusion coefficient than the conventional wallboard, presumably due to the micro-pore structure differences between the two materials. The data generated could be used to assess the sorption effects of formaldehyde on building materials and to evaluate its impact on the formaldehyde concentration in buildings.  相似文献   
159.
Knowledge on atmospheric abundance of peroxyacetyl nitrate (PAN) is important in assessing the severity of photochemical pollution, and for understanding chemical transformation of reactive odd nitrogen and its impact on the budget of tropospheric ozone (O3). In summer 2006, continuous measurements of PAN were made using an automatic GC–ECD analyzer with an on-line calibrator at a suburban site of Lanzhou (LZ) and a remote site of Mt. Waliguan (WLG) in western China, with concurrent measurements of O3, total reactive nitrogen (NOy) and carbon monoxide (CO). At LZ, several photochemical episodes were observed during the study, and the average mixing ratio of PAN (plus or minus standard deviation) was 0.76 (±0.89) ppbv with the maximum value of 9.13 ppbv, compared to an average value of 0.44 (±0.16) ppbv at remote WLG. The PAN mixing ratios in LZ exhibited strong diurnal variations with a maximum at noon, while enhanced concentrations of PAN were observed in the evening and a minimum in the afternoon at WLG. The daily O3 and PAN concentration maxima showed a strong correlation (r2 = 0.91) in LZ, with a regression slope (PAN/O3) of 0.091 ppbv ppbv?1. At WLG, six well-identified pollution plumes (lasting 2–8 h) were observed with elevated concentrations of PAN (and other trace gases), and analysis of backward particle release simulation shows that the high-PAN events at WLG were mostly associated with the transport of air masses that had passed over LZ.  相似文献   
160.
Measurement of ambient gas-phase total peroxides was performed at the summit of Mount Tai (Mt. Tai, 1534 m above sea level) in central-eastern China during March 22–April 24 and June 16–July 20, 2007. The hourly averaged concentration of peroxides was 0.17 ppbv (± 0.16 ppbv, maximum: 1.28 ppbv) and 0.55 ppbv (± 0.67 ppbv, maximum: 3.55 ppbv) in the spring and summer campaigns, respectively. The average concentration of peroxides at Mt. Tai, which is in a heavily polluted region, was much lower than hydrogen peroxide measurements made at some rural mountain sites, suggesting that significant removal processes took place in this region. An examination of diurnal variation and a correlation analysis suggest that these removal processes could include chemical suppression of peroxide production due to the scavenging of peroxy and hydroxy radicals by high NOx, wet removal by clouds/fogs rich in dissolved sulfur dioxide which reacts quickly with peroxides, and photolysis. These sinks competed with photochemical sources of peroxides, resulting in different mean concentrations and diurnal pattern of peroxides in the spring and summer. A principal component analysis was conducted to quantify the major processes that influenced the variation of peroxide concentrations. This analysis shows that in the spring photochemical production was an important source of peroxides, and the major sink was scavenging during upslope transport of polluted and humid air from the lower part of the planetary boundary layer (PBL) and wet removal by synoptic scale clouds. During the summer, highly polluted PBL air (with high NOx) was often associated with very low peroxides due to the chemical suppression of HO2 by high NOx and wet-removal by clouds/fogs in this sulfur-rich atmosphere, especially during the daytime. Higher concentrations of peroxides, which often appeared at mid-nighttime, were mainly associated with subsidence of air masses containing relatively lower concentrations of NOy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号