首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12146篇
  免费   136篇
  国内免费   1109篇
安全科学   161篇
废物处理   896篇
环保管理   1413篇
综合类   2524篇
基础理论   3484篇
环境理论   1篇
污染及防治   2680篇
评价与监测   1117篇
社会与环境   994篇
灾害及防治   121篇
  2024年   6篇
  2023年   63篇
  2022年   161篇
  2021年   117篇
  2020年   107篇
  2019年   101篇
  2018年   1555篇
  2017年   1481篇
  2016年   1342篇
  2015年   329篇
  2014年   207篇
  2013年   258篇
  2012年   684篇
  2011年   1578篇
  2010年   887篇
  2009年   780篇
  2008年   1042篇
  2007年   1394篇
  2006年   150篇
  2005年   91篇
  2004年   101篇
  2003年   152篇
  2002年   171篇
  2001年   72篇
  2000年   84篇
  1999年   80篇
  1998年   71篇
  1997年   57篇
  1996年   56篇
  1995年   45篇
  1994年   39篇
  1993年   35篇
  1992年   18篇
  1991年   11篇
  1990年   9篇
  1989年   7篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1984年   14篇
  1983年   11篇
  1982年   2篇
  1981年   1篇
  1977年   1篇
  1972年   2篇
  1935年   2篇
  1918年   1篇
  1917年   1篇
  1916年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
21.
In this work, Bi2XO6 (X = W, Mo) are synthesized at different temperatures. The results of tests find the optimal temperatures of Bi2WO6 and Bi2MoO6 are 180 and 160°C (BW-180, BM-160). Then, BW-180 and BM-160 are further compounded with different contents of CuS. The results of photoelectrochemical (PEC) tests show that CuS can improve the PEC performance of semiconductor materials, and it has better performance when CuS mass fraction is 5%. These maybe the photoelectron potentials generated by CuS/Bi2XO6 (X = Mo, W) heterojunction reduce the combination of photogenerated electrons and holes. When the PEC sensor based on 5%-CuS/BW-180 detects Cr(VI), it has a linear range of 1–80 μmol/L with detection limit of 0.95 μmol/L, while the PEC sensor based on 5%-CuS/BM-160 detects Cr(VI) has a linear range of 0.5–230 μmol/L and a detection limit of 0.12 μmol/L. Thus, 5%-CuS/Bi2XO6 has potential application in hexavalent chromium detection.  相似文献   
22.
Industrial agriculture is yearly responsible for the loss of 55–100 Pg of historical soil carbon and 9.9 Tg of reactive nitrogen worldwide. Therefore, management practices should be adapted to preserve ecological processes and reduce inputs and environmental impacts. In particular, the management of soil organic matter (SOM) is a key factor influencing C and N cycles. Soil microorganisms play a central role in SOM dynamics. For instance, microbial diversity may explain up to 77 % of carbon mineralisation activities. However, soil microbial diversity is actually rarely taken into account in models of C and N dynamics. Here, we review the influence of microbial diversity on C and N dynamics, and the integration of microbial diversity in soil C and N models. We found that a gain of microbial richness and evenness enhances soil C and N dynamics on the average, though the improvement of C and N dynamics depends on the composition of microbial community. We reviewed 50 models integrating soil microbial diversity. More than 90 % of models integrate microbial diversity with discrete compartments representing conceptual functional groups (64 %) or identified taxonomic groups interacting in a food web (28 %). Half of the models have not been tested against an empirical dataset while the other half mainly consider fixed parameters. This is due to the difficulty to link taxonomic and functional diversity.  相似文献   
23.
MnO2 microspheres with various surface structures were prepared using the hydrothermal method, and Au/MnO2 catalysts were synthesized using the sol-gel method. We obtained three MnO2 microspheres and Au/MnO2 samples: coherent solid spheres covered with wire-like nanostructures, solid spheres with nanosheets, and hierarchical hollow microspheres with nanoplatelets and nanorods. We investigated the properties and catalytic activities of formaldehyde oxidation at room temperature. Crystalline structures of MnO2 are the main factor affecting the catalytic activities of these samples, and γ-MnO2 shows high catalytic performance. The excellent redox properties are responsible for the catalytic ability of γ-MnO2. The gold-supported interaction can change the redox properties of catalysts and accelerate surface oxygen species transition, which can account for the catalytic activity enhancement of Au/MnO2. We also studied intermediate species. The dioxymethylene (DOM) and formate species formed on the catalyst surface were considered intermediates, and were ultimately transformed into hydrocarbonate and carbonate and then decomposed into CO2. A proposed mechanism of formaldehyde oxidation over Au/MnO2 catalysts was also obtained.  相似文献   
24.
The structure of coastal land cover in Estonia is intricate and exhibits considerable differences from site to site. The diverse geomorphology of the seashores is one of the key factors affecting the speed and magnitude of land cover changes. Likewise, the history of human inhabitance on the coast has also shaped the character of land cover. The Estonian coastal zone has experienced abrupt and radical changes in land ownership and its related land use during the last century. The main objectives of this paper are: 1) to give an overview of land use and the trends of development of land cover pattern along different parts of the Estonian coast; and 2) to analyze the relationships of natural and human processes and their cumulative impact on the evolution of coastal land cover pattern in Estonia. This study is based on results obtained during fieldwork in the study areas and on the analysis of large-scale (1:10,000) historical maps. In agriculturally dominant coastal areas, the traditional open landscape of fields and grassland at the beginning of the 20th century had been replaced by woodland and grasslands with shrubs by the start of the 21st century. Expansion of reed beds in areas of former seashore grasslands is another striking phenomenon. The structure of land cover on forested coasts has been fairly stable during the last 100 years. Areas of urban sprawl are characterised by dramatic changes in land cover structure. Rapidly increasing population and expanding settlements imposes on the ecological balance of the fragile dune forests in the coastal zone.  相似文献   
25.

Background, aim, and scope  

Alum (aluminum sulfate) is the currently preferred chemical amendment for phosphorus (P) treatment in poultry litter (PL). Aluminum-based drinking-water treatment residuals (Al-WTRs) are the waste by-product of the drinking-water treatment process and have been effectively used to remove P from aqueous solutions, but their effectiveness in PL water extracts has not been studied in detail. Elevated cost associated with alum could be minimized by using the equally effective WTRs to remove soluble P from PL, and they can be obtained at a minimal cost from drinking-water treatment plants.  相似文献   
26.
The classical use of synthetic dyes is causing issues of environmental pollution and heath risk. As a consequence natural dyes are gaining interest, but the use of natural dyes still includes toxic reagents such as metals as mordants and acids to enhance color and yield. Therefore, we designed a new chitosan-polypropylene imine dendrimer hybrid at 0–2000 mg/L to treat wool before dyeing with cochineal. We compared dye exhaustion, color depth, color characteristics, and color fastness of the new process with dyed pristine and metal mordanted wool. Results show that wool pretreatment improved dye exhaustion from 48 to 88 %, shifted saturation point toward lower dye concentration from 3000 to 1000 mg/L, and improved color depth from 13.68 for pristine wool and 15.17 for metal mordanted wool to 23.89 for the new process.  相似文献   
27.
Environmental Science and Pollution Research - It is of great significance for the coordinated development of the environment and the economy to study the impact of the human driving factors of...  相似文献   
28.
Environmental Science and Pollution Research - The occurrence and progression of ovarian cancer are closely related to genetics and environmental pollutants. Poly(ADP-ribose) polymerase (PARP)...  相似文献   
29.
Bottom ash is the major by-product of municipal solid waste incineration(MSWI), and is often reused as an engineering material, such as road-base aggregate. However, some metals(especially aluminum) in bottom ash can react with water and generate gas that could cause expansion and failure of products containing the ash; these metals must be removed before the ash is utilized. The size distribution and the chemical speciation of metals in the bottom ash from two Chinese MSWI plants were examined in this study, and the recovery potential of metals from the ash was evaluated. The metal concentrations in these bottom ashes were lower than that generated in other developed countries. Specifically, the contents of Al,Fe, Cu and Zn were 18.9–29.2, 25.5–32.3, 0.7–1.0 and 1.6–2.5 g/kg, respectively. Moreover,44.9–57.0 wt.% of Al and 55.6–75.4 wt.% of Fe were distributed in bottom ash particles smaller than 5 mm. Similarly, 46.6–79.7 wt.% of Cu and 42.9–74.2 wt.% of Zn were concentrated in particles smaller than 3 mm. The Fe in the bottom ash mainly existed as hematite, and its chemical speciation was considered to limit the recovery efficiency of magnetic separation.  相似文献   
30.
为了保证海水中铁元素含量的检测质量,更好地深入了解铁在整个海水体系的生物地球化学中扮演的角色,需科学地评定检测结果的分散性。文章依据《测量不确定度的评定与表示》(JJF1059-1999)的理论,以浙江近海海水为例,评定原子吸收法测定海水中铁含量的不确定度。测得浙江近海样品中铁的浓度为5.2μg/L,扩展不确定度U=0.8μg/L(k=2)。通过对各不确定度分量进行评定发现,利用该方法测定海水中铁含量时,对其合成标准不确定度的主要贡献来自于样品制备过程,尤其是萃取过程。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号