首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17631篇
  免费   207篇
  国内免费   136篇
安全科学   494篇
废物处理   641篇
环保管理   2292篇
综合类   3641篇
基础理论   4311篇
环境理论   17篇
污染及防治   4402篇
评价与监测   1047篇
社会与环境   1002篇
灾害及防治   127篇
  2022年   128篇
  2021年   142篇
  2020年   123篇
  2019年   149篇
  2018年   232篇
  2017年   277篇
  2016年   370篇
  2015年   317篇
  2014年   412篇
  2013年   1424篇
  2012年   509篇
  2011年   703篇
  2010年   555篇
  2009年   618篇
  2008年   718篇
  2007年   748篇
  2006年   689篇
  2005年   563篇
  2004年   526篇
  2003年   541篇
  2002年   477篇
  2001年   593篇
  2000年   461篇
  1999年   269篇
  1998年   216篇
  1997年   206篇
  1996年   225篇
  1995年   234篇
  1994年   237篇
  1993年   220篇
  1992年   225篇
  1991年   217篇
  1990年   214篇
  1989年   186篇
  1988年   160篇
  1987年   138篇
  1986年   165篇
  1985年   166篇
  1984年   173篇
  1983年   170篇
  1982年   165篇
  1981年   178篇
  1980年   157篇
  1979年   154篇
  1978年   113篇
  1977年   128篇
  1974年   118篇
  1973年   98篇
  1972年   115篇
  1968年   96篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
901.
This study evaluated the abilities of various plant species to act as bio-monitors for environmental uranium (U) contamination. Vegetation and soil samples were collected from a U processing facility. The water-way fed from facility storm and processing effluents was the focal sample site as it represented a primary U transport mechanism. Soils and sediments from areas exposed to contamination possessed U concentrations that averaged 630 mg U kg(-1). Aquatic mosses proved to be exceptional accumulators of U with dry weight (dw) concentrations measuring as high as 12,500 mg U kg(-1) (approximately 1% of the dw mass was attributable to U). The macrophytes (Phragmites communis, Scripus fontinalis and Sagittaria latifolia) were also effective accumulators of U. In general, plant roots possessed higher concentrations of U than associated upper portions of plants. For terrestrial plants, the roots of Impatiens capensis had the highest observed levels of U accumulation (1030 mg kg(-1)), followed by the roots of Cyperus esculentus and Solidago speciosa. The concentration ratio (CR) characterized dry weight (dw) vegetative U levels relative to that in associated dw soil. The plant species that accumulated U at levels in excess of that found in the soil were: P. communis root (CR, 17.4), I. capensis root (CR, 3.1) and S. fontinalis whole plant (CR, 1.4). Seven of the highest ten CR values were found in the roots. Correlations with concentrations of other metals with U were performed, which revealed that U concentrations in the plant were strongly correlated with nickel (Ni) concentrations (correlation: 0.992; r-squared: 0.984). Uranium in plant tissue was also strongly correlated with strontium (Sr) (correlation: 0.948; r-squared: 0.899). Strontium is chemically and physically similar to calcium (Ca) and magnesium (Mg), which were also positively-correlated with U. The correlation with U and these plant nutrient minerals, including iron (Fe), suggests that active uptake mechanisms may influence plant U accumulation.  相似文献   
902.
Persistent harmful scenarios associated with disposal of radioactive waste, high-background radiation areas and severe nuclear accidents are of great concern regarding consequences to both human health and the environment. Of particular concern is the extracellular DNA in aquatic environments contaminated by radiological substances. Strand breaks induced by radiation promote decrease in the transformation efficiency for extracellular DNA. The focus of this study is the quantification of DNA damage following long-term exposure (over one year) to low doses of natural uranium (an alpha particle emitter) to simulate natural conditions, since nothing is known about alpha radiation induced damage to extracellular DNA. A high-resolution Atomic Force Microscope was used to evaluate DNA fragments. Double-stranded plasmid pBS as a model for extracellular DNA was exposed to different amounts of natural uranium. It was demonstrated that low concentrations of U in water (50 to 150 ppm) produce appreciable numbers of double strand breaks, scaling with the square of the average doses. The importance of these findings for environment monitoring of radiological pollution is addressed.  相似文献   
903.
Electrofishing is widely used to monitor fish species composition and relative abundance in streams and lakes. According to standard protocols, multiple segments are selected in a body of water to monitor population relative abundance as the ratio of total catch to total sampling effort. The standard protocol provides an assessment of fish distribution at a macrohabitat scale among segments, but not within segments. An ancillary protocol was developed for assessing fish distribution at a finer scale within electrofishing segments. The ancillary protocol was used to estimate spacing, dispersion, and association of two species along shore segments in two local reservoirs. The added information provided by the ancillary protocol may be useful for assessing fish distribution relative to fish of the same species, to fish of different species, and to environmental or habitat characteristics.  相似文献   
904.
Metal concentrations were evaluated in water, bottom sediments, and biota in four field campaigns from 2002 to 2004 in the Potiguar Basin, northeastern Brazil, where offshore oil exploration occurs. Analyses were performed by inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry. Total metal concentrations in water (dissolved?+?particulate) and sediments were in the range expected for coastal and oceanic areas. Abnormally high concentrations in waters were only found for Ba (80 μg?l?1) and Mn (12 μg?l?1) at the releasing point of one of the outfalls, and for the other metals, concentrations in water were found in stations closer to shore, suggesting continental inputs. In bottom sediments, only Fe and Mn showed abnormal concentrations closer to the effluent releasing point. Metal spatial distribution in shelf sediments showed the influence of the silt–clay fraction distribution, with deeper stations at the edge of the continental shelf, which are much richer in silt–clay fraction showing higher concentrations than shallower sediments typically dominated by carbonates. Metal concentrations in estuarine (mollusks and crustaceans) and marine (fish) organisms showed highest concentrations in oysters (Crassostrea rhizophorae). Fish tissues metal concentrations were similar between the continental shelf influenced by the oil exploration area and a control site. The results were within the range of concentrations reported for pristine environments without metals contamination. The global results suggest small, if any, alteration in metal concentrations due to the oil exploration activity in the Potiguar Basin. For monitoring purposes, the continental inputs and the distribution of the clay–silt fraction need to be taken into consideration for interpreting environmental monitoring results.  相似文献   
905.
Municipal solid waste incineration (MSWI) is a straightforward way to manage waste, however the disposal of process byproducts, mainly bottom and fly ash, is still a problem, because of their hazardous contents. Fly ash is a byproduct of many other processes that involve combustion to produce energy. In this paper we present and discuss a new method for MSWI fly ash inertization, mainly based on the use of colloidal silica as a stabilization agent for metals. In the patented procedure, fly ash of different provenance can be used to produce an inert and non-hazardous material, that can be reused. In fact to make the recovery process more efficient, landfilling should be totally avoided. For this reason, to enhance the possibility of reuse, a washing process, for salts recovery, is proposed as a final step of the inertization procedure. The obtained inert material is called COSMOS (COlloidal Silica Medium to Obtain Safe inert), and it is composed of calcium carbonate, calcium sulfate, silicon oxide and a wide quantity of non-soluble amorphous compounds. COSMOS does not contain any corrosive salts. This makes it extremely interesting for cement industry applications with several other advantages, and environmental benefits. The new proposed inertization procedure appears very promising, because it allows MSWI fly ash to be considered a valuable resource. Thanks to the obtained results, a demonstration project, in the frame of LIFE+, has been funded by the European Commission (LIFE+ 2008 project ENV/IT/000434, ).  相似文献   
906.
Thirty-nine samples of recent bottom sediments were collected from Mabahiss Bay, north of Hurghada City, Red Sea, Egypt. The collected samples were subjected to a total digestion technique and analyzed by absorption spectrometer for metals including Pb, Zn, Cd, Ni, Co, Cu, and Mn. Concentration data were processed using correlation analysis, principal component analysis, and hierarchical cluster analysis. Multivariate statistical analysis classified heavy metals in the study area into different groups. The pollution level attributed to these metals was evaluated using geoaccumulation index and contamination factor in order to determine anthropogenically derived sediment contamination. The results of both geoaccumulation index and contamination factor results reveal that the study area is not contaminated with respect to Zn, Ni, Cu, and Mn; uncontaminated to moderately contaminate with Pb; and moderately to strongly contaminate with Cd. The high contents of Pb, Cd, and Co in the study area result from various anthropogenic activities including dredging, land filling, localized oil pollution, using of antifouling and anticorrosive paints from fishing and tourist boats, and sewage discharging from various sources within the study area.  相似文献   
907.
Chemical weathering is one of the major geochemical processes that control the mobilization of heavy metals. The present study provides the first report on heavy metal fractionation in sediments (8–156 m) of Lake Titicaca (3,820 m a.s.l.), which is shared by the Republic of Peru and the Plurinational State of Bolivia. Both contents of total Cu, Fe, Ni, Co, Mn, Cd, Pb, and Zn and also the fractionation of these heavy metals associated with four different fractions have been determined following the BCR scheme. The principal component analysis suggests that Co, Ni, and Cd can be attributed to natural sources related to the mineralized geological formations. Moreover, the sources of Cu, Fe, and Mn are effluents and wastes generated from mining activities, while Pb and Zn also suggest that their common source is associated to mining activities. According to the Risk Assessment Code, there is a moderate to high risk related to Zn, Pb, Cd, Mn, Co, and Ni mobilization and/or remobilization from the bottom sediment to the water column. Furthermore, the Geoaccumulation Index and the Enrichment Factor reveal that Zn, Pb, and Cd are enriched in the sediments. The results suggest that the effluents from various traditional mining waste sites in both countries are the main source of heavy metal contamination in the sediments of Lake Titicaca.  相似文献   
908.
River systems consist of hydrogeomorphic patches (HPs) that emerge at multiple spatiotemporal scales. Functional process zones (FPZs) are HPs that exist at the river valley scale and are important strata for framing whole-watershed research questions and management plans. Hierarchical classification procedures aid in HP identification by grouping sections of river based on their hydrogeomorphic character; however, collecting data required for such procedures with field-based methods is often impractical. We developed a set of GIS-based tools that facilitate rapid, low cost riverine landscape characterization and FPZ classification. Our tools, termed RESonate, consist of a custom toolbox designed for ESRI ArcGIS®. RESonate automatically extracts 13 hydrogeomorphic variables from readily available geospatial datasets and datasets derived from modeling procedures. An advanced 2D flood model, FLDPLN, designed for MATLAB® is used to determine valley morphology by systematically flooding river networks. When used in conjunction with other modeling procedures, RESonate and FLDPLN can assess the character of large river networks quickly and at very low costs. Here we describe tool and model functions in addition to their benefits, limitations, and applications.  相似文献   
909.
Concentrations of arsenic and four additional trace elements (Cu, Cr, Ni, and Zn) were determined by inductively coupled plasma–optical emission spectrometry in the muscular tissue of the yellow catfish (Cathorops spixii) and the urutu catfish (Genidens genidens) from Paranaguá Estuarine Complex, Brazil (PEC). The PEC can be characterized by an environment of high ecological and economic importance in which preserved areas of rainforest and mangroves coexist with urban activities as ports and industries. The average concentrations (in milligram per kilogram dry weight) of elements in the muscle tissue of C. spixii are as follows: Zn (31), As (17), Cu (1.17), Cr (0.62), and Ni (0.28). Similar concentrations could be found in G. genidens with exception of As: Zn (36), As (4.78), Cu (1.14), Cr (0.51), and Ni (0.14). Fish from the geographic northern rural region (Guaraqueçaba–Benito) display higher As concentrations in the muscle tissues than fish found in the south-western (urban) part of the PEC. An international comparison of muscle tissue concentrations of trace elements in fish was made. Except for Ni in C. spixii, a tendency of decrease in element concentration with increasing size (age) of the fish could be observed. According to the National Health Surveillance Agency of Brazil, levels of Cr and As exceeded the permissible limits for seafood. An estimation of the provisional tolerable weekly intake of As was calculated with 109 % for C. spixii and with 29 % for G. genidens.  相似文献   
910.
In this study, baseflow and storm discharges were monitored in seven watersheds of varying development density to document the effects of development on stream water quality. In addition, two of the watersheds contained package wastewater treatment facilities, which were evaluated as an alternative to residential on-site septic systems. Monthly grab samples of baseflow and flow-proportional samples of storm event discharge were collected and analyzed for nitrogen, phosphorus, sediment, and bacteria. For the five watersheds without wastewater treatment facilities, a significant linear relationship was documented between fecal coliform and enterococci levels in baseflow samples and the percentage of residential or impervious area. For the two watersheds with wastewater discharge, bacteria levels were significantly greater than those from the two relatively undeveloped watersheds. These results indicate that bacteria levels increased with increasing residential development even if many of the septic systems were replaced by a community wastewater treatment system. Computed annual export rates for ammonia nitrogen (NH3-N) were correlated to the percentage of impervious surfaces in the watersheds, while the rates for other nitrogen forms, total phosphorus, and total suspended sediment were not. Annual export rates from the two mostly undeveloped watersheds were greater than a compilation of rates for undeveloped areas across the USA. Export from the four watersheds with more than 68 % residential land use was less than those reported from local and national studies of residential areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号