首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1622篇
  免费   16篇
  国内免费   40篇
安全科学   22篇
废物处理   109篇
环保管理   154篇
综合类   138篇
基础理论   291篇
环境理论   2篇
污染及防治   555篇
评价与监测   299篇
社会与环境   104篇
灾害及防治   4篇
  2023年   59篇
  2022年   173篇
  2021年   114篇
  2020年   25篇
  2019年   46篇
  2018年   82篇
  2017年   88篇
  2016年   109篇
  2015年   44篇
  2014年   79篇
  2013年   180篇
  2012年   75篇
  2011年   89篇
  2010年   69篇
  2009年   58篇
  2008年   71篇
  2007年   56篇
  2006年   64篇
  2005年   34篇
  2004年   23篇
  2003年   20篇
  2002年   28篇
  2001年   8篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1989年   2篇
  1988年   3篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   5篇
  1979年   2篇
  1969年   1篇
  1966年   1篇
  1965年   2篇
  1964年   2篇
  1962年   2篇
  1961年   4篇
  1958年   3篇
  1957年   3篇
  1956年   2篇
  1955年   4篇
  1953年   1篇
排序方式: 共有1678条查询结果,搜索用时 0 毫秒
111.
Air pollution in the workplace environment due to industrial operation have been found to cause serious occupational health hazard. Similarly, heat stress is still most neglected occupational hazard in the tropical and subtropical countries like India. The hot climate augments the heat exposure close to sources like furnaces. In this study an attempt is made to assess air pollution and heat exposure levels to workers in the workplace environment in glass manufacturing unit located in the State of Gujarat, India. Samples for workplace air quality were collected for SPM, SO2, NO2 and CO2 at eight locations. Results of workplace air quality showed 8-hourly average concentrations of SPM: 165–9118 μg/m3, SO2: 6–9 μg/m3 and NO2: 5–42 μg/m3, which were below the threshold limit values of workplace environment. The level of CO2 in workplace air of the plant was found to be in the range 827–2886 μg/m3, which was below TLV but much higher than the normal concentration for CO2 in the air (585 mg/m3). Indoor heat exposure was studied near the furnace and at various locations in an industrial complex for glass manufacturing. The heat exposure parameters including the air temperature, the wet bulb temperature, and the globe parameters were measured. The Wet Bulb Globe Temperature (WBGT), an indicator of heat, exceeded ACGIH TLVs limits most of the time at all the locations in workplace areas. The recommended duration of work and rest have also been estimated.  相似文献   
112.
The requirements for treated wastewater are becoming increasingly more stringent, and therefore the improved efficiency of biological treatment processes is indispensable at industrial effluent treatment plants (ETPs). Microorganisms such as bacteria play an important role in the natural cycling of materials and particularly in the decomposition of organic wastes. The knowledge of the interactions among these microbial populations needs to be harnessed for optimum evaluation and functioning of effluent treatment plants. Modern molecular techniques have revolutionized the methods of assessing these microbial populations. The combination of the results of these microbial assessments along with the on-site parameters at ETPs would favor an efficient treatment. In this review, the various approaches and importance of correlating the microbial population dynamics and treatment of wastewater at industrial ETPs has been elaborated.  相似文献   
113.
Nickel(II) reacts with N-ethyl-3-carbazolecarboxaldehyde-3-thiosemicarbazone (ECCT) and forms a yellow colored complex, which was extracted into n-butanol from sodium acetate and acetic acid buffer at pH 6.0. The absorbance value of the Ni(II)-ECCT complex was measured at different intervals of time at 400nm, to ascertain the time stability of the complex. The extraction of the complex into the solvent was instantaneous and stable for more than 72h. The system obeyed Beer's law in the concentration range of 1.2-5.6mugml(-1) of nickel(II), with an excellent linearity and a correlation coefficient of 0.999. The molar absorptivity and Sandell's sensitivity of the extracted species were found to be 1.114x10(4)Lmol(-1)cm(-1) and 5.29x10(-3)mugcm(-2) at 400nm, respectively. Hence, a detailed study of the extraction of nickel(II) with ECCT has been undertaken with a view to developing a rapid and sensitive extractive spectrophotometric method for the determination of nickel(II) when present alone or in the presence of diverse ions which are usually associated with nickel(II) in environmental matrices like soil and industrial effluents. Various standard alloy samples (CM 247 LC, IN 718, BCS 233, 266, 253 and 251) have been tested for the determination of nickel for the purpose of validation of the present method. The results of the proposed method are comparable with those from atomic absorption spectrometry and were found to be in good agreement.  相似文献   
114.
To assess the dust interception efficiency of some selected tree species and impact of dust deposition on chlorophyll and ascorbic acid content of leaves the present study was undertaken. The plant species selected for the study were Ficus religiosa, Ficus benghalensis, Mangifera indica, Dalbergia sissoo, Psidium guajava, and Dendrocalamus strictus. It was found that all species have maximum dust deposition in the winter season followed by summer and rainy seasons. Chlorophyll content decreased and ascorbic acid content increased with the increase of dust deposition. There was significant negative and positive correlation between dust deposition and chlorophyll and ascorbic acid content, respectively. Maximum dust interception was done by Dalbergia sisso and least by Dendrocalamus strictus. Thus plants can be used to intercept dust particles which are of potential health hazards to humans.  相似文献   
115.
Biodiesel provides a feasible solution to the twin crisis of energy security and environmental concerns prevalent today, and it can be extracted from conventional oil crops as well as microalgae. However, lipid productivity in case of microalgae is much higher and has several advantages as compared with crop plants, so it is a better feedstock for biodiesel. In case of Chlorella pyrenoidosa, the heterotrophic cultured cells were found to be better in terms of lipid production, and ultimately biodiesel production, but the bottleneck is that in this mode glucose is used to feed the cells, which amounts to almost 80% of the total cost of biodiesel production. The purpose of this study is to evaluate and highlight the feasibility of using the industrially cheap cane molasses as a carbon source in place of glucose for a large-scale, low-cost lipid production of Chlorella pyrenoidosa. When treated molasses was used as a carbon source instead of glucose, the biomass sharply increases from 0.89 to 1.22 g L–1. On the other hand, the total lipid content increases from 0.27 to 0.66 g g–1. The specific growth rate and yield was higher in treated molasses as compared with that in glucose-supplemented. A mathematical model was also developed based on logistic, Luedeking–Piret, and Luedeking-Piret-like equations. Model predictions were in satisfactory agreement with the measured data, and the mode of lipid production was growth-associated.  相似文献   
116.
The effect of air mass (AM) on the performance of multi-crystalline silicon (m-Si), amorphous silicon (a-Si), and hetero-junction with intrinsic thin layer (HIT)-technology-based photovoltaic (PV) modules are evaluated for representative day of four seasons during the year 2011 for composite climate of India. To find the best performing PV module technology with respect to AM at the site, annual energy yields and performance ratio against different AM bands (AM 1–4.5) are plotted. It is found that HIT modules perform better than m-Si and a-Si at each AM band. Annual energy yields for all three technologies decrease with increasing order of AM bands. The performance ratio for HIT and m-SI modules initially increases and then decreases with increasing order of AM bands. However, for a-Si modules, the performance ratio decreases with increasing order of the AM bands.  相似文献   
117.
Stabilizing global greenhouse gas concentrations at levels to avoid significant climate risks will require massive "decarbonization" of all the major economies over the next few decades, in addition to the reduced emissions from other GHGs and carbon sequestration. Achieving the necessary scale of emissions reductions will require a multifaceted policy effort to support a broad array of technological and behavioral changes. Change on this scale will require sound, well-thought-out strategies. In this article, we outline some core principles, drawn from recent social science research, for guiding the design of clean technology policies, with a focus on energy. The market should be encouraged to make good choices: pricing carbon emissions and other environmental damage, removing distorting subsidies and barriers to competition, and supporting RD&D broadly. More specific policies are required to address particular market failures and barriers. For those technologies identified as being particularly desirable, some narrower RD&D policies are available.  相似文献   
118.
In the present investigation, the bioefficacy of developed carbofuran formulations, with PEG-600 (7a, CP1) & PEG-900 (7b, CP2) @ 5, 10 and 20 ppm, along with commercial formulation of carbofuran 3G (CP0) were evaluated against the root-knot nematode, Meloidogyne incognita infecting tomato (cv. Pusa Ruby) in pot and field conditions. The bioefficacy data indicated that the formulations developed by utilizing polymers having PEG - 900 (7b) as hydrophilic segment were effective even at 14 days post inoculation (dpi) as evident from shoot and root length. Also, the reduction in penetration was found to be maximum with CP2 (3.6 - 4.6 J2s) at all concentrations compared to CP1 (6.6-16.4 J2s) and CP0 (29.3-32.6 J2s). Overall, CP2 was more effective in reducing the number of nematodes up to 14 days, compared to CP1 and CP0. Both the CR formulations (CP1 and CP2) in general significantly reduced the number of galls, when compared to CP0. However, under field conditions, lower concentrations (5, and 10 ppm) of CP2, were less effective in controlling the gall formation whereas, CP2 at 20 ppm, was most effective than other treatments. The study revealed that the developed CR formulations of carbofuran have the potential for effective management of M. incognita in tomato under field conditions.  相似文献   
119.
The distributions of nanoparticles (below 300 nm in diameter) change rapidly after emission from the tail pipe of a moving vehicle due to the influence of transformation processes. Information on this time scale is important for modelling of nanoparticle dispersion but is unknown because the sampling frequencies of available instruments are unable to capture these rapid processes. In this study, a fast response differential mobility spectrometer (Cambustion Instruments DMS500), originally designed to measure particle number distributions (PNDs) and concentrations in engine exhaust emissions, was deployed to measure particles in the 5–1000 nm size range at a sampling frequency of 10 Hz. This article presents results of two separate studies; one, measurements along the roadside in a Cambridge (UK) street canyon and, two, measurements at a fixed position (20 cm above road level), centrally, in the wake of a single moving diesel-engined car. The aims of the first measurements were to test the suitability and recommend optimum operating conditions of the DMS500 for ambient measurements. The aim of the second study was to investigate the time scale over which competing influences of dilution and transformation processes (nucleation, condensation and coagulation) affect the PNDs in the wake of a moving car. Results suggested that the effect of transformation processes was nearly complete within about 1 s after emission due to rapid dilution in the vehicle wake. Furthermore, roadside measurements in a street canyon showed that the time for traffic emissions to reach the roadside in calm wind conditions was about 45 ± 6 s. These observations suggest the hypothesis that the effects of transformation processes are generally complete by the time particles are observed at roadside and the total particle numbers can then be assumed as conserved. A corollary of this hypothesis is that complex transformation processes can be ignored when modelling the behaviour of nanoparticles in street canyons once the very near-exhaust processes are complete.  相似文献   
120.
In the present study, fate of carbofuran in anaerobic environments and the adverse effects of carbofuran on conventional anaerobic systems were evaluated. Carbofuran degradation studies were carried out in batch reactors with varying carbofuran concentrations of 0 to 270.73 mg/L corresponding to a sludge-loading rate (SLR) of 2.12 x 10(-6) to 3.83 x 10(-3) g of carbofuran/g of volatile suspended solids (VSS)/d. Carbofuran concentration was reduced to undetectable levels at the end of 8 and 13 days in the batch reactors operated with a SLR of 2.12 x 10(-6) and 3.33 x 10(-5) g of carbofuran/g of VSS/d, respectively. Performances of two anaerobic reactors i.e. upflow anaerobic sludge blanket (UASB) and modified UASB (with tube settlers) were evaluated in the presence and absence of carbofuran using synthetic wastewater. In the absence of carbofuran, the soluble chemical oxygen demand (COD) removal efficiency in the conventional UASB reactor at 8 h and 6 h hydraulic retention time (HRT) was nearly 88% and 76%, respectively, whereas in modified UASB reactor it was increased to 90% at 8 h HRT and 78% at 6 h HRT. When 28 mg/L (SLR of 1.19 x 10(-2) g of carbofuran/g of VSS/d) of carbofuran was introduced in the reactors, the COD removal efficiency was reduced to 41% and 44% in conventional and modified UASB reactors respectively. However, the reactor could maintain around 80% COD removal efficiency at a carbofuran concentration of 7.84 mg/L (SLR of 3.64 x 10(-3) g of carbofuran/g of VSS/d). The reactor efficiency was also measured in terms of specific acetoclastic methanogenic activity (SMA). The toxic effect of carbofuran was reversible to a certain extent. Carbofuran removal efficiency in the conventional UASB reactor at carbofuran concentrations of 7, 13 and 28 mg/L were 40 +/- 3%, 27 +/- 3%, and 11 +/- 3%, respectively. In modified UASB reactor, carbofuran removal efficiency was almost uniform at 7 and 13 mg/L but it was reduced nearly by 56% at 28 mg/L. The major metabolite of carbofuran i.e. 3-keto carbofuran was found in all the reactors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号