首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   1篇
  国内免费   4篇
安全科学   1篇
废物处理   35篇
环保管理   42篇
综合类   27篇
基础理论   54篇
污染及防治   68篇
评价与监测   49篇
社会与环境   8篇
  2023年   4篇
  2022年   7篇
  2021年   6篇
  2020年   5篇
  2019年   3篇
  2018年   7篇
  2017年   8篇
  2016年   12篇
  2015年   13篇
  2014年   10篇
  2013年   39篇
  2012年   17篇
  2011年   16篇
  2010年   15篇
  2009年   8篇
  2008年   18篇
  2007年   8篇
  2006年   10篇
  2005年   9篇
  2004年   12篇
  2003年   8篇
  2002年   7篇
  2001年   8篇
  2000年   5篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   6篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1979年   2篇
  1977年   1篇
  1972年   1篇
  1961年   1篇
排序方式: 共有284条查询结果,搜索用时 46 毫秒
141.
Ammonia (NH3) volatilization is an undesirable mechanism for the removal of nitrogen (N) from wastewater treatment wetlands. To minimize the potential for NH3 volatilization, it is important to determine how wetland design affects NH3 volatilization. The objective of this research was to determine how the presence of a pond section affects NH3 volatilization from constructed wetlands treating wastewater from a confined swine operation. Wastewater was added at different N loads to six constructed wetlands of the marsh-pond-marsh design that were located in Greensboro, North Carolina, USA. A large enclosure was used to measure NH3 volatilization from the marsh and pond sections of each wetland in July and August of 2001. Ammonia volatilized from marsh and pond sections at rates ranging from 5 to 102 mg NH3-N m(-2) h(-1). Pond sections exhibited a significantly greater increase in the rate of NH3 volatilization (p < 0.0001) than did either marsh section as N load increased. At N loads greater than 15 kg ha(-1) d(-1), NH3 volatilization accounted for 23 to 36% of the N load. Furthermore, NH3 volatilization was the dominant (54-79%) N removal mechanism at N loads greater than 15 kg ha(-1) d(-1). Without the pond sections, NH3 volatilization would have been a minor contributor (less than 12%) to the N balance of these wetlands. To minimize NH3 volatilization, continuous marsh systems should be preferred over marsh-pond-marsh systems for the treatment of wastewater from confined animal operations.  相似文献   
142.
Temporal oscillations in hydrology are a common occurrence in wetlands and can result in alternating flooded and drained conditions in the surface soil. These oscillations in water levels can stimulate microbial activities and result in the mobilization and redistribution of significant amounts of carbon (C), nitrogen (N), and phosphorus (P). The goal of this study was to experimentally simulate a drawdown and reflood of marsh soil from a nutrient-enriched site and a reference site of a wetland (Blue Cypress Marsh Conservation Area, Florida). The goal was to better understand the changes in biogeochemistry and microbial activities present in these soils as a result of hydrological fluctuations. Measurements of dissolved reactive phosphorus (DRP), ammonia, and nitrate in the floodwater indicated significantly higher (alpha = 0.05) NH(4)(+) and DRP fluxes from the nutrient-enriched site; floodwaters in the cores from both sites contained significant NO(3)(-) concentrations (9.6 mg N L(-1)), which was rapidly consumed over the core incubation period (30 d). Water level drawdown and reflooding initially stimulated the soil microbial biomass, methanogenic rates, and extracellular enzyme activities (acid phosphatase and beta-glucosidase). The anaerobic microbial metabolic activities (CO(2)) where initially significantly (alpha = 0.05) enhanced by the reflood, resulting in roughly equivalent rates as the aerobic respiratory activities (CO(2)), presumably as a function of the high water column NO(3)(-) levels. This study illustrates that the reflood event in the hydrological cycles in a wetland can significantly stimulate the activities of hydrolytic enzymes and microbiological communities in these soils.  相似文献   
143.
The Florida Everglades have undergone significant ecological change resulting from anthropogenic manipulation of historical regimes of hydrology, nutrient loading, and fire. Water Conservation Area 2A (WCA-2A) in the northern Everglades has been a focal point for the study of ecological effects of nutrient loading, especially phosphorus (P), from the nearby Everglades Agricultural Area (EAA). The overall objective of our study was to evaluate recent (1990 to 1998) changes in the spatial extent and patterns of soil P enrichment in Everglades WCA-2A. Surface soil was sampled to a depth of 10 cm at 62 sites within WCA-2A during 1998 for analysis of total phosphorus (TP) content. Geostatistical methods were used to create an interpolated grid of soil TP values across WCA-2A. Comparison of the results of this study with a similar study performed in 1990 showed that the extent of soil P enrichment in surface soil and sediments increased between 1990 and 1998, as evidenced by increased coverage of highly P-enriched soil near the primary surface inflows and a general increase in the concentration of soil TP in the interior regions of WCA-2A. Approximately 73% (31 777 ha) of the total land area of WCA-2A was considered P-enriched (soil total P > 500 mg kg(-1)) in 1998, compared with 48% of the land area (20,829 ha) in 1990, an average increase of 1,327 ha yr(-1). Study results indicate that the soil P enrichment "front" has advanced further into the relatively unimpacted interior of WCA-2A during the past several years.  相似文献   
144.
Wetland soils play a key role in the cycling of nutrients within an ecosystem. Since soils are potentially a source or a sink for inorganic nutrients, it is important to quantify their influence on overlying water quality in order to understand their importance in overall ecosystem nutrient budgets. Laboratory and field studies were performed in the northern Everglades (WCA-2A) to determine the magnitude of phosphorus (P) flux between the soil and the overlying water column, under various redox conditions. The P flux was estimated using three techniques: intact soil cores, in situ benthic chambers, and porewater equilibrators. There was reasonable agreement between the P flux estimated using intact soil cores and benthic chambers; however, P flux estimates using the porewater equilibrators were considerably lower than the other two techniques. Models of solute flux, based solely on soil physico-chemical characteristics, may substantially underestimate soil-water nutrient exchange processes. Phosphorus flux measured with the intact soil cores varied from 6.5 mg m(-2) d(-1) near nutrient inflow areas to undetectable flux 4 km away from the inflow. Oxygen consumption varied from 4 mg m(-2) d(-1) near the inflow to a constant 1 to 2 mg m(-2) d(-1) at a distance of 4 km from the inflow. Rate of consumption of NO3- -N and SO4(2-) showed no significant trend with respect to distance from inflow. Nitrate N and SO4 consumption rates averaged 120 and 130 mg m(-1) d(-1), respectively. Consumption of O2 was correlated with P flux, whereas NO3- -N and SO4(2-) consumption were not.  相似文献   
145.
Potential use of reservoirs and flooded fields stocked with aquatic plants for reduction of the nutrient levels of organic soil drainage water was evaluated. The treatment systems include 1) a large single reservoir (R1) stocked with waterhyacinth (Eichhornia crassipes), elodea (Egeria densa), and cattails (Typha sp.) in series; 2) three small reservoirs in series with waterhyacinth (R2), elodea (R3), and cattails (R4), grown in independent reservoirs; 3) a control reservoir (R5) with no cultivated plants; 4) a large single flooded field planted to cattails; 5) three small flooded fields in a series planted to cattails; and 6) a flooded field with no cultivated plants. Drainage water was pumped daily (6 hours a day, and 6 days a week) into these systems for a period of 27 months at predetermined constant flow rates. Water samples were collected at the inlet and outlet of each treatment system and analyzed for N and P forms.The series of reservoirs stocked with aquatic plants functioned effectively in the removal of N and P from agricultural drainage water, compared to a single large reservoir. Allowing the water to flow through the reservoir stocked with waterhyacinth plants with a residence time of 3.6 days was adequate to remove about 50% of the incoming inorganic N. Allowing the water to flow through a series of two small reservoirs, R2 and R3, with a residence time of 7.3 days was necessary to remove about 60% of the incoming ortho-P. Flooded fields were effective in the removal of inorganic N, but showed poor efficiency in the removal of ortho-P.Florida Agricultural Experiment Stations Journal Series No. 2320.  相似文献   
146.
Using Schwarz-Christoffel transformation, an analysis is presented for finding the pressure distribution and exit gradients for a weir on an anisotropic drained stratum.  相似文献   
147.
148.
Thoron levels in the dwellings of Hyderabad city, Andhra Pradesh, India   总被引:1,自引:0,他引:1  
Thoron and its progeny concentration levels were measured in the urban Hyderabad area using solid state nuclear track detector (SSNTD) based dosimeters. Measurements were carried out on quarterly cycles making four measurements at each location in a calendar year. More than 100 dwellings of different construction types were chosen for the study across Hyderabad city. The thoron concentration levels were found to vary between 8 and 330 Bq m(-3). The geometric mean value of thoron concentration was found to be 37.3 Bq m(-3) (GSD = 2.3) with an average of 55 +/- 57 Bq m(-3). Results were analysed for different category of houses with respect to their construction type. It was found that the dwellings with mud flooring had higher thoron levels.  相似文献   
149.
Sodium fluoride (NaF), a widespread natural pollutant was given to sperm-positive female rats throughout gestation and lactation at a dose of 4.5 and 9.0 ppm via drinking water. The neonates were allowed to grow up to 90 days on tap water, and then sperm parameters, testicular steroidogenic marker enzyme activity levels, and circulatory hormone levels were studied. The sperm count, sperm motility, sperm coiling (hypoosmotic swelling test), and sperm viability were decreased in experimental rats when compared with controls. The activity levels of testicular steroidogenic marker enzymes (3β hydroxysteroid dehydrogenase and 17β hydroxysteroid dehydrogenase) were significantly decreased in experimental animals indicating decreased steroidogenesis. The serum testosterone, follicle stimulating hormone and luteinizing hormone levels were also significantly altered in experimental animals. Our data indicate that exposure to NaF during gestation and lactation affects male reproduction in adult rats by decreasing spermatogenesis and steroidogenesis.  相似文献   
150.
Environmental Chemistry Letters - Water contamination is increasing worldwide, yet actual methods of water and wastewater treatment are limited, in particular by actual fossil-fuel derived...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号