排序方式: 共有16条查询结果,搜索用时 7 毫秒
11.
Lowther J. A. Cross L. Stapleton T. Gustar N. E. Walker D. I. Sills M. Treagus S. Pollington V. Lees D. N. 《Food and environmental virology》2019,11(3):247-258
Food and Environmental Virology - Contamination of bivalve shellfish, particularly oysters, with norovirus is recognised as a significant food safety risk. Methods for quantification of norovirus... 相似文献
12.
Hale RC Alaee M Manchester-Neesvig JB Stapleton HM Ikonomou MG 《Environment international》2003,29(6):771-779
North America consumes over half of the world's production of polybrominated diphenyl ether (PBDE) flame retardants. About 98% of global demand for the Penta-BDE mixture, the constituents of which are the most bioaccumulative and environmentally widespread, resides here. However, research on the environmental distribution of PBDEs in North America has lagged behind that in Northern Europe. Examination of available governmentally maintained release data suggests that Deca-BDE use in the US substantially exceeds that in Canada. Penta-BDE use probably follows a similar pattern. PBDE demand in Mexico is uncertain, but is assumed to be comparatively modest. Recent research examining air, water, sediment, sewage sludge and aquatic biota suggests that Penta-BDE constituents are present in geographically disparate locations in the US and Canada. The less brominated congeners have been observed in areas distant from their known use or production, e.g. the Arctic. PBDEs have been detected in low concentrations in North American air, water and sediment, but much higher levels in aquatic biota. Increased burdens as a function of position in the food web have been noted. PBDE concentrations in US and Canadian sewage sludges appear to be at least 10-fold greater than European levels and may be a useful barometer of release. In general, PBDE concentrations in environmental media reported in North America are comparable or exceed those observed elsewhere in the world. In contrast to Europe, environmental burdens are increasing over time here, consistent with the greater consumption of the commercial mixtures. However, data remain relatively scarce. Deca-BDE in the North American environment appears largely restricted to points of release, e.g. urban areas and those where PBDE-containing sewage sludges have been applied. This lack of redistribution is likely due to its extremely low volatility and water solubility. Penta-BDE and Deca-BDE products are used in different applications and this may also be a factor controlling their environmental release. 相似文献
13.
J.?I.?Kunzelman M.?J.?DurakoEmail author W.?J.?Kenworthy A.?Stapleton J.?L.?C.?Wright 《Marine Biology》2005,148(2):241-250
The endangered seagrass Halophila johnsonii Eiseman, exhibits high-light adapted photophysiology consistent with its distribution in intertidal and shallow subtidal (0–3 m) coastal-lagoon habitats along 200 km of southeastern Florida. To examine the short-term responses of this seagrass to three controlled-irradiance treatments (PAR + UVA + UVB [full spectrum], PAR + UVA, and PAR only), greenhouse-acclimated plants were transferred to outdoor mesocosms during July–August 2002. Chlorophyll fluorescence, UV fluorescence, and samples for pigment extraction were collected in the greenhouse, prior to moving the plants outside and on days 1, 2, 3, 4, 6, 10, and 21 of the 24-day experiment. Typical of sun-adapted plants, effective quantum yields measured by pulse-amplitude modulated (PAM) fluorometry were relatively low in all treatments, ranging from 0.46 ± 0.09 (PAR only) to 0.58 ± 0.08 (PAR + UVA + UVB). In the PAR only treatments, there were strong effects on days 1 and 4, presumably because the irradiance in the greenhouse not only lacked all λ<400 nm, but also had low irradiance maxima (∼700 μmol photons m−2 s−1, compared with ∼1,500 μmol photons m−2 s−1 outside at midday). There were few treatment differences between PAR only and PAR + UVA treatments indicating little effect of UVA radiation on this species. Differences in effective quantum yields and relative electron transport rates between the PAR only and PAR + UVA + UVB treatments on day 4 indicated rapid acclimation to UVB radiation. Tissues of H. johnsonii contained compounds that absorbed strongly in the UV, with a λmax at ∼345 nm (depending on the extraction solvent). Absorption peak maxima and minima changed over the course of the experiment but there were no significant light-treatment differences in any pigment parameters. Percent UV shield values, measured using a newly developed UVA PAM fluorometer, were highest the day after plants were transferred from the greenhouse to the outdoor mesocosms and declined significantly to pretreatment levels in all treatments by day 21. Percent UV shield exhibited a significant positive relationship with UV-absorbing pigment (UVP) absorbance, however, the absence of treatment effects suggests that the wavelengths inducing pigment synthesis must lie between 400 and 700 nm (PAR). The results indicate that H. johnsonii rapidly acclimates to high UVB and PAR which may largely explain its distribution in intertidal and shallow subtidal areas. 相似文献
14.
Stapleton CM Wyer MD Kay D Crowther J McDonald AT Walters M Gawler A Hindle T 《Journal of environmental monitoring : JEM》2007,9(5):427-439
As the requirements of the Water Framework Directive (WFD) and the US Clean Water Act (USCWA) for the maintenance of microbiological water quality in 'protected areas' highlight, there is a growing recognition that integrated management of point and diffuse sources of microbial pollution is essential. New information on catchment microbial dynamics and, in particular, the sources of faecal indicator bacteria found in bathing and shellfish harvesting waters is a pre-requisite for the design of any 'programme of measures' at the drainage basin scale to secure and maintain compliance with existing and new health-based microbiological standards. This paper reports on a catchment-scale microbial source tracking (MST) study in the Leven Estuary drainage basin, northwest England, an area for which quantitative faecal indicator source apportionment empirical data and land use information were also collected. Since previous MST studies have been based on laboratory trials using 'manufactured' samples or analyses of spot environmental samples without the contextual microbial flux data (under high and low flow conditions) and source information, such background data are needed to evaluate the utility of MST in USCWA total maximum daily load (TMDL) assessments or WFD 'Programmes of Measures'. Thus, the operational utility of MST remains in some doubt. The results of this investigation, using genotyping of Bacteroidetes using polymerase chain reaction (PCR) and male-specific ribonucleic acid coliphage (F + RNA coliphage) using hybridisation, suggest some discrimination is possible between livestock- and human-derived faecal indicator concentrations but, in inter-grade areas, the degree to which the tracer picture reflected the land use pattern and probable faecal indicator loading were less distinct. Interestingly, the MST data was more reliable on high flow samples when much of the faecal indicator flux from catchment systems occurs. Whilst a useful supplementary tool, the MST information did not provide quantitative source apportionment for the study catchment. Thus, it could not replace detailed empirical measurement of microbial flux at key catchment outlets to underpin faecal indicator source apportionment. Therefore, the MST techniques reported herein currently may not meet the standards required to be a useful forensic tool, although continued development of the methods and further catchment scale studies could increase confidence in such methods for future application. 相似文献
15.
Christopher W. Simmons Hongyun Guo Joshua T. Claypool Megan N. Marshall Kristen M. Perano James J. Stapleton Jean S. VanderGheynst 《Waste management (New York, N.Y.)》2013,33(5):1090-1096
Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10% (g/g) compost containing 16.9 mg CO2/g dry weight organic carbon resulted in soil temperatures that were 2–4 °C higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization. 相似文献
16.
Assessment of indoor exposure to polybrominated diphenyl ethers (PBDEs) requires a critical examination of methods that may influence exposure estimates and comparisons between studies. We measured PBDEs in residential dust collected from 20 homes in Boston, MA, to examine 5 key questions: 1) Does the choice of dust exposure metric-e.g., concentration (ng/g) or dust loading (ng/m2)-affect analysis and results? 2) To what degree do dust concentrations change over time? 3) Do dust concentrations vary between rooms? 4) Is the home vacuum bag an acceptable surrogate for researcher-collected dust? 5) Are air and dust concentrations correlated for the same room? We used linear mixed-effects models to analyze the data while accounting for within-home and within-room correlations. We found that PBDE dust concentration and surface loading were highly correlated (r=0.86-0.95, p<0.001). Average dust concentrations did not significantly differ over an 8-month period, possibly because home furnishings changed little over this time. We observed significant differences between rooms in the same home: PBDE concentrations in the main living area were 97% higher than the bedroom for decaBDE (p=0.02) and 72% higher for pentaBDE (p=0.05). Home vacuum bag dust concentrations were significantly lower than researcher-collected dust and not strongly correlated. Air (vapor and particulate phase) and dust concentrations were correlated for pentaBDE (p=0.62, p<0.01), but not for decaBDE (p=0.25). In addition, potential markers of BDE 209 debromination (BDE 202 and the BDE197:BDE201 ratio) were also observed in household dust samples. One vacuum bag sample contained the highest concentrations of BDE 209 (527,000 ng/g) and total PBDEs (544,000 ng/g) that have been reported in house dust. 相似文献