首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   625篇
  免费   8篇
  国内免费   2篇
安全科学   22篇
废物处理   18篇
环保管理   85篇
综合类   92篇
基础理论   135篇
环境理论   2篇
污染及防治   191篇
评价与监测   39篇
社会与环境   45篇
灾害及防治   6篇
  2023年   2篇
  2022年   8篇
  2021年   13篇
  2020年   4篇
  2019年   8篇
  2018年   21篇
  2017年   17篇
  2016年   18篇
  2015年   27篇
  2014年   28篇
  2013年   47篇
  2012年   26篇
  2011年   36篇
  2010年   43篇
  2009年   38篇
  2008年   30篇
  2007年   36篇
  2006年   31篇
  2005年   20篇
  2004年   28篇
  2003年   21篇
  2002年   26篇
  2001年   10篇
  2000年   17篇
  1999年   16篇
  1998年   6篇
  1997年   7篇
  1996年   4篇
  1995年   7篇
  1994年   9篇
  1993年   3篇
  1991年   2篇
  1989年   2篇
  1984年   2篇
  1980年   3篇
  1976年   1篇
  1972年   1篇
  1971年   1篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1963年   1篇
  1962年   1篇
  1961年   1篇
  1958年   1篇
  1955年   1篇
  1949年   1篇
  1948年   1篇
  1937年   1篇
  1920年   1篇
排序方式: 共有635条查询结果,搜索用时 435 毫秒
131.
Yu X  Trapp S  Zhou P  Hu H 《Chemosphere》2005,59(8):1099-1104
The response of cyanide metabolism rates of two woody plants to changes in temperature is investigated. Detached leaves (1.0 g fresh weight) from weeping willow (Salix babylonica L.) and Chinese elder (Sambucus chinensis Lindl.) were kept in glass vessels with 100ml of aqueous solution spiked with potassium cyanide for a maximum of 28 h. Ten different temperatures were used ranging from 11 degrees C to 32 degrees C. The disappearance of aqueous cyanide was analyzed spectrophotometrically. The cyanide removal rate of Chinese elder was higher than that of weeping willow at all temperatures. The highest cyanide removal rate for Chinese elder was found at 30 degrees C with a value of 12.6 mg CN kg(-1) h(-1), whereas the highest value of the weeping willow was 9.72 mg CN kg(-1) h(-1) at 32 degrees C. The temperature coefficient values, Q10, which are the ratio of removal rates at a 10 degree difference, were determined for Chinese elder and weeping willow to 1.84 and 2.09, respectively, indicating that the cyanide removal rate of weeping willow was much more susceptible to changes in temperature than that of the Chinese elder. In conclusion, changes in temperature have a substantial influence on the removal rate of cyanide by plants.  相似文献   
132.
Metabolism of cyanide by Chinese vegetation   总被引:4,自引:0,他引:4  
Yu X  Trapp S  Zhou P  Wang C  Zhou X 《Chemosphere》2004,56(2):121-126
Cyanide is a high-volume production chemical and the most commonly used leaching reagent for gold and silver extraction. Its environmental behavior and fate is of significant concern because it is a highly toxic compound. Vascular plants possess an enzyme system that detoxifies cyanide by converting it to the amino acid asparagine. This paper presents an investigation of the potential of Chinese vegetation to degrade cyanide. Detached leaves (1.5 g fresh weight) from 28 species of 23 families were kept in glass vessel with 100 ml of aqueous solution spiked with potassium cyanide at 23.5 degrees C for 28 h. Cyanide concentrations ranged from 0.83 to 1.0 CN mg l(-1). The disappearance of cyanide from the aqueous solution was analyzed spectrophotometrically. The fastest cyanide removal was by Chinese elder, Sambucus chinensis, with a removal capacity of 8.8 mg CN kg(-1) h(-1), followed by upright hedge-parsley (Torilis japonica) with a value of 7.5 mg CN kg(-1) h(-1). The lowest removal capacity had the snow-pine tree (Credrus deodara (Roxb.) Loud). Results from this investigation indicated that a wide range of plant species is able to efficiently metabolize cyanide. Therefore, cyanide elimination with plants seems to be a feasible option for cleaning soils and water contaminated by cyanide from gold and silver mines or from other sources.  相似文献   
133.
BACKGROUND: Methyl tertiary butyl ether (MTBE) is the second most highly produced industrial chemical in the US and a frequent groundwater pollutant. At the same time, MTBE is quite persistent to biotic and abiotic decomposition. The goal of this study was to find plant species that could degrade MTBE and might be used in phytoremediation. METHODS: Excised roots and leaves (0.3 g) from more than 24 Danish plant species out of 15 families were kept in glass vessels with 25 ml spiked aqueous solution for 2 to 4 days. MTBE concentrations were 1 to 5 mg/L. Samples were taken directly from the solution with a needle and injected to a purge and trap unit. MTBE and the main metabolite, TBA, were measured by GC/FID. RESULTS AND DISCUSSION: Solutions with roots of poplar (Populus robusta) and a willow hybrid (Salix viminalis x schwerinii) produced TBA in trace amounts, probably stemming from bacteria. Significant MTBE reduction (> 10%) was not observed in any of the tests. Leaves from none of the species (trees, grasses and herbs) reduced the concentration of MTBE in the solution and no TBA, nor any other known metabolite of MTBE, was detected. CONCLUSION: It was not possible to find plants capable of efficiently degrading MTBE. This gives rise to the conclusion that plants probably cannot degrade MTBE at all, or only very slowly. RECOMMENDATIONS AND OUTLOOK: For phytoremediation projects, this has, as consequence, that the volatilization by plants (except with genetically engineered plants) is the only relevant removal process for MTBE. For risk assessment of MTBE, degradation by the plant empire is not a relevant sink process.  相似文献   
134.
Chloroorganic chemicals emitted from the pulp and paper mill at nekoski in central Finland were monitored for several years. Concentration time series are used for evaluating the environmental fate and the applicability and validity of an exposure models. Fitted elimination rates of 3,4,5-Tri-, 4,5,6-Tri-, Tetrachloroguaiacol and 2,4,6-Trichlorophenol are approx. 0.22 d-1, or rather the half-lives are approx. 3 days. The elimination is most likely by biodegradation and transport-controlled. For 2,3,6-trichloro-p-cymene, fate simulations indicate significant volatilization and sedimentation. Good agreement is achieved with a one-dimensional steady-state box model, except for concentrations in fish. For a reliable assessment of environmental damage, laboratory experiments, monitoring and simulations need to be in tune.  相似文献   
135.
In the North Tyrolean Limestone Alps a site was investigated over a four-year period (1998–2001) in order to assess the nitrogen saturation status, the nitrogen budget (quantification of the net uptake of nitrogen by the canopy and of the nitrogen mineralization, nitrogen uptake from roots and N2O emission rates, proof of the origin of nitrate in the soil water with stable isotope analyses), and the effects of the actual nitrogen input on ground water quality. The main goals were to quantify the nitrogen input rate, the nitrogen pools in above-ground and below-ground compartments, nitrogen turnover processes in the soil as well as the output into the groundwater and into the atmosphere. The findings are based on continuous and discontinuous field measurements as well as on model results.While nitrogen input exceeded the Critical Loads of the WHO (1995), nitrogen deficiency and nutrient imbalances were verified by needle analyses. The atmospheric input of inorganic nitrogen was higher than the nitrogen output in 50 cm soil depth. A tracer experiment with15N helped to prove that not more than half of the applied nitrate could be discharged. This allows the conclusion that nitrogen is stored in the system and that the site cannot yet be said to be saturated with nitrogen. The same result was also obtained by modelling. In addition, it was proved that the nitrogen discharge did not stem from deposition but from processes within the system.  相似文献   
136.
The fate of fuel oxygenates such as methyl tert-butyl ether (MTBE) in the subsurface is governed by their degradability under various redox conditions. The key intermediate in degradation of MTBE and ethyl tert-butyl ether (ETBE) is tert-butyl alcohol (TBA) which was often found as accumulating intermediate or dead-end product in lab studies using microcosms or isolated cell suspensions. This review discusses in detail the thermodynamics of the degradation processes utilizing various terminal electron acceptors, and the aerobic degradation pathways of MTBE and TBA. It summarizes the present knowledge on MTBE and TBA degradation gained from either microcosm or pure culture studies and emphasizes the potential of compound-specific isotope analysis (CSIA) for identification and quantification of degradation processes of slowly biodegradable pollutants such as MTBE and TBA. Microcosm studies demonstrated that MTBE and TBA may be biodegradable under oxic and nearly all anoxic conditions, although results of various studies are often contradictory, which suggests that site-specific conditions are important parameters. So far, TBA degradation has not been shown under methanogenic conditions and it is currently widely accepted that TBA is a recalcitrant dead-end product of MTBE under these conditions. Reliable in situ degradation rates for MTBE and TBA under various geochemical conditions are not yet available. Furthermore, degradation pathways under anoxic conditions have not yet been elucidated. All pure cultures capable of MTBE or TBA degradation isolated so far use oxygen as terminal electron acceptor. In general, compared with hydrocarbons present in gasoline, fuel oxygenates biodegrade much slower, if at all. The presence of MTBE and related compounds in groundwater therefore frequently limits the use of in situ biodegradation as remediation option at gasoline-contaminated sites. Though degradation of MTBE and TBA in field studies has been reported under oxic conditions, there is hardly any evidence of substantial degradation in the absence of oxygen. The increasing availability of field data from CSIA will foster our understanding and may even allow the quantification of degradation of these recalcitrant compounds. Such information will help to elucidate the crucial factors of site-specific biogeochemical conditions that govern the capability of intrinsic oxygenate degradation.  相似文献   
137.
138.
139.
140.
The influence of industrial chemicals in the environment is strongly determined by the condition of the soil. Considering the complex interrelationships of soil condition and the specific parameters of the material as influential to bioavailability and decompositional reactions, it is necessary to reproduce various situations via a selected battery of ecotoxicological tests. The use of such batteries has already proved to be suitable for the examination of sediments. In order to make statements about the dangerous potential of chemicals in the soil, samples of natural soil were exposed to industrial chemicals (surfactants, mineral oil hydrocarbons, an antibiotic and a pesticide), and examined regularly in test batteries over a period of four weeks. This microcosm works as a degradation test of environmental relevance, monitoring the effects and reactions of industrial chemicals in natural soil. All test results collected over this period of time come to a very complex and multi-dimensional compilation of data which needs to be considered in full before an assessment is possible. The main goal in analysing the data is to extract the maximum possible information from the matrix. Aside from the graphic presentation, mathematic graphs of the data will be introduced. This method aims to provide a structural and logical relationship to the data, in order to build up a classification system and an order of precedence, which should make it possible to estimate potential risk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号