Pesticide soil/solution distribution coefficients ( Kd values), commonly referred to as pesticide soil sorption values, are utilized in computer and decision aid models to predict soil mobility of the compounds. The values are specific for a given chemical in a given soil sample, normally taken from surface soil, a selected soil horizon, or at a specific soil depth, and are normally related to selected soil properties. Pesticide databases provide Kd values for each chemical, but the values vary widely depending on the soil sample on which the chemicals were tested. We have correlated Kd values reported in the literature with the reported soil properties for an assortment of pesticides in an attempt to improve the accuracy of a Kd value for a specific chemical in a soil with known soil properties. Mathematical equations were developed from regression equations for the related properties. Soil properties that were correlated included organic matter content, clay mineral content, and/or soil pH, depending on the chemical properties of the pesticide. Pesticide families for which Kd equations were developed for 57 pesticides include the following: Carboxy acid, amino sulfonyl acid, hydroxy acid, weakly basic compounds and nonionizable amide/anilide, carbamate, dinitroaniline, organochlorine, organophosphate, and phenylurea compounds. Mean Kd values for 32 additional pesticides, many of which had Kd values that were correlated with specific soil properties but for which no significant Kd equations could be developed are also included. 相似文献
Low frequency noise (LFN) as background noise in urban and work environments is emitted from many artificial sources such as road vehicles, aircraft, and air movement machinery including wind turbines, compressors, and ventilation or air conditioning units. In addition to objective effects, LFN could also cause noise annoyance and influence mental performance; however, there are no homogenous findings regarding this issue. The purpose of this research was to study the effects of LFN on mental performance and annoyance, as well as to consider the role of extraversion and neuroticism on the issue. This study was conducted on 90 students of Iran University of Medical Sciences (54 males and 36 females). The mean age of the students was 23.46 years (SD?=?1.97). Personality traits and noise annoyance were measured by using Eysenck Personality Inventory and a 12-scale self-reported questionnaire, respectively. Stroop and Cognitrone computerized tests measured mental performance of participants each exposed to 50 and 70 dBA of LFN and silence. LFNs were produced by Cool Edit Pro 2.1 software. There was no significant difference between mental performance parameters under 50 and 70 dBA of LFN, whereas there were significant differences between most mental performance parameters in quiet and under LFN (50 and 70 dBA). This research showed that LFN, compared to silence, increased the accuracy and the test performance speed (p?<?0.01). There was no association between LFN and noise annoyance (p?>?0.01). Introverts conducted the tests faster than extraverts (p?<?0.05). This research showed that neuroticism does not influence mental performance. It seems that LFN has increased arousal level of participants, and extraversion has a considerable impact on mental performance. 相似文献
The number concentration and size distribution of ultrafine particles in a S?derberg and a prebake potroom of an aluminium primary smelter have been measured using a scanning mobility particle spectrometer. The particle morphology was studied by transmission electron microscopy (TEM). The study shows the existence of elevated number concentrations of ultrafine particles in both potrooms. The main source of these particles is likely to be the process of anode changing. The ultrafine particles were measured directly at the source but could also be identified as episodes of high number concentrations in the general background air. Unlike the larger particles belonging to the 50-100 nm mode, the nanoparticle mode could not be detected in the TEM indicating that they may not be stable under the applied sampling conditions and/or the high vacuum in the instrument. 相似文献
Economic analyses of the greenhouse effect are typically carried out within the framework of computable general equilibrium models which represent the climate system by simple two box proxies based upon the pioneering work of Nordhaus. Since errors in predicting the carbon budget can imply high costs, there is some need to include more sophisticated climate models into the economics of global climate change. This paper presents a non-linear pulse representation of the process-based and data-validated Bern carbon model. Compared to the Nordhaus approach this leads to different results with respect to optimal climate policy and atmospheric carbon dioxide concentration. In particular, our results suggest that economic studies which use a Nordhaus representation of the climate system are biased towards high carbon emission and low abatement levels. 相似文献
Despite the numerous benefits of hydropower production, this renewable energy source can have serious negative consequences on the environment. For example, dams act as barriers for the longitudinal migration of organisms and transport of particulate matter. Accelerated siltation processes in the receiving river reduce the vertical connectivity between river and groundwater. Hydropeaks, caused by short-term changes in hydropower operation, result in a negative impact on both habitat and organisms, especially during winter months when natural discharge is low and almost constant. In this study, we report the current deficits present in the River Rhone from two different scientific perspectives – fish ecology and hydrology. Potential rehabilitation solutions in synergy with flood protection measures are discussed. We focus on the effects of hydropeaking in relation to longitudinal and vertical dimensions and discuss local river widening as a potential rehabilitation tool. The fish fauna in the Rhone is characterized by a highly unnatural structure (low diversity, impaired age distribution). A high correlation between fish biomass and monotonous morphology (poor cover availability) was established. Tracer hydrology provided further details about the reduced permeability of the riverbank, revealing a high degree of siltation with K values of about 4.7 × 10?6 m s?1. Improving the hydrologic situation is therefore essential for the successful rehabilitation of the Rhone River. To this end, hydropeaks in the river reaches must be attenuated. This can be realized by a combination of different hard technical and soft operational measures such as retention reservoirs or slower up and down ramping of turbines. 相似文献
The present work focuses on the fate of two cancerostatic platinum compounds (CPC), cisplatin and carboplatin, as well as of two inorganic platinum compounds, [PtCl4]2− and [PtCl6]2− in biological wastewater treatment. Laboratory experiments modelling adsorption of these compounds onto activated sludge showed promising specific adsorption coefficients KD and KOC and Freundlich adsorption isotherms. However, the adsorption properties of the investigated substances were differing significantly. Adsorption decreased following the order cisplatin > [PtCl6]2− > [PtCl4]2− > carboplatin. Log KD-values were ranging from 2.5 to 4.3 , log KOC from 3.0 to 4.7.
A pilot membrane bioreactor system (MBR) was installed in a hospital in Vienna and fed with wastewater from the oncologic in-patient treatment ward to investigate CPC-adsorption in a sewage treatment plant. During three monitoring periods Pt-concentrations were measured in the influent (3–250 μg l−1 Pt) and the effluent (2–150 μg l−1 Pt) of the treatment plant using ICP-MS. The monitoring periods (duration 30 d) revealed elimination efficiencies between 51% and 63% based on averaged weekly input–output budgets. The derived log KD-values and log KOC-values ranged from 2.4 to 4.8 and from 2.8 to 5.3, respectively. Species analysis using HPLC-ICP-MS proofed that mainly carboplatin was present as intact drug in the influent and – due to low log KD – in the effluent of the MBR. 相似文献
The effect of sequencing batch reactor operation on presence and concentration of tetracycline-resistant organisms was studied as a function of organic loading rate (OLR) and solids retention time (SRT), with and without supplemented influent tetracycline. These effects were evaluated using bacterial counts, bacterial production, system growth rate, and percent resistance. These evaluation parameters were applied to both intermediate resistant and resistant heterotrophs, enterics, and lactose fermenters. Tetracycline intermediate resistant and resistant bacteria are defined as the survival of colonies on agar with 5 and 20 mg/L tetracycline, respectively. Based on these studies, increases in influent tetracycline concentration and OLR resulted in amplification of tetracycline resistance. Decreases in SRT also resulted in amplification of tetracycline resistance. 相似文献
The COVID-19 pandemic has exposed an interconnected and tightly coupled globalized world in rapid change. This article sets the scientific stage for understanding and responding to such change for global sustainability and resilient societies. We provide a systemic overview of the current situation where people and nature are dynamically intertwined and embedded in the biosphere, placing shocks and extreme events as part of this dynamic; humanity has become the major force in shaping the future of the Earth system as a whole; and the scale and pace of the human dimension have caused climate change, rapid loss of biodiversity, growing inequalities, and loss of resilience to deal with uncertainty and surprise. Taken together, human actions are challenging the biosphere foundation for a prosperous development of civilizations. The Anthropocene reality—of rising system-wide turbulence—calls for transformative change towards sustainable futures. Emerging technologies, social innovations, broader shifts in cultural repertoires, as well as a diverse portfolio of active stewardship of human actions in support of a resilient biosphere are highlighted as essential parts of such transformations. 相似文献
The fate of hydrophobic organic compounds (HOCs) in soils and waters in a northern boreal catchment was explored through the development of a chemical fate model in a well-characterised catchment system dominated by two land types: forest and mire. Input was based solely on atmospheric deposition, dominated by accumulation in the winter snowpack. Release from soils was governed by the HOC concentration in soil, the soil organic carbon fraction and soil-water DOC content. The modelled export of selected HOCs in surface waters ranged between 11 and 250 ng day−1 during the snow covered period, compared to 200 and 9600 ng/d during snow-melt; highlighting the importance of the snow pack as a source of these chemicals. The predicted levels of HOCs in surface water were in reasonable agreement to a limited set of measured values, although the model tended to over predict concentrations of HOCs for the forested sub-catchment, by over an order of magnitude in the case of hexachlorobenzene and PCB 180. This possibly reflects both the heterogeneity of the forest soils and the complicated and changing hydrology experienced between the different seasons. 相似文献