首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   998篇
  免费   43篇
  国内免费   12篇
安全科学   41篇
废物处理   47篇
环保管理   267篇
综合类   71篇
基础理论   246篇
环境理论   1篇
污染及防治   275篇
评价与监测   67篇
社会与环境   31篇
灾害及防治   7篇
  2023年   6篇
  2022年   8篇
  2021年   8篇
  2020年   15篇
  2019年   4篇
  2018年   21篇
  2017年   30篇
  2016年   30篇
  2015年   25篇
  2014年   33篇
  2013年   99篇
  2012年   39篇
  2011年   53篇
  2010年   39篇
  2009年   45篇
  2008年   60篇
  2007年   57篇
  2006年   55篇
  2005年   39篇
  2004年   35篇
  2003年   37篇
  2002年   37篇
  2001年   17篇
  2000年   30篇
  1999年   17篇
  1998年   18篇
  1997年   16篇
  1996年   22篇
  1995年   19篇
  1994年   17篇
  1993年   10篇
  1992年   13篇
  1991年   5篇
  1990年   5篇
  1989年   13篇
  1988年   6篇
  1987年   13篇
  1986年   5篇
  1985年   6篇
  1984年   7篇
  1983年   6篇
  1982年   10篇
  1981年   4篇
  1980年   2篇
  1979年   6篇
  1978年   4篇
  1977年   3篇
  1972年   1篇
  1971年   1篇
  1963年   1篇
排序方式: 共有1053条查询结果,搜索用时 322 毫秒
171.
Telomere length has been purported as a biomarker for age and could offer a non-lethal method for determining the age of wild-caught individuals. Molluscs, including oysters and abalone, are the basis of important fisheries globally and have been problematic to accurately age. To determine whether telomere length could provide an alternative means of ageing molluscs, we evaluated the relationship between telomere length and age using the commercially important Sydney rock oyster (Saccostrea glomerata). Telomere lengths were estimated from tissues of known age individuals from different age classes, locations and at different sampling times. Telomere length tended to decrease with age only in young oysters less than 18 months old, but no decrease was observed in older oysters aged 2–4 years. Regional and temporal differences in telomere attrition rates were also observed. The relationship between telomere length and age was weak, however, with individuals of identical age varying significantly in their telomere length making it an imprecise age biomarker in oysters.  相似文献   
172.
Guo H  Pennings SC 《Ecology》2012,93(1):90-100
Understanding of how plant communities are organized and will respond to global changes requires an understanding of how plant species respond to multiple environmental gradients. We examined the mechanisms mediating the distribution patterns of tidal marsh plants along an estuarine gradient in Georgia (USA) using a combination of field transplant experiments and monitoring. Our results could not be fully explained by the "competition-to-stress hypothesis" (the current paradigm explaining plant distributions across estuarine landscapes). This hypothesis states that the upstream limits of plant distributions are determined by competition, and the downstream limits by abiotic stress. We found that competition was generally strong in freshwater and brackish marshes, and that conditions in brackish and salt marshes were stressful to freshwater marsh plants, results consistent with the competition-to-stress hypothesis. Four other aspects of our results, however, were not explained by the competition-to-stress hypothesis. First, several halophytes found the freshwater habitat stressful and performed best (in the absence of competition) in brackish or salt marshes. Second, the upstream distribution of one species was determined by the combination of both abiotic and biotic (competition) factors. Third, marsh productivity (estimated by standing biomass) was a better predictor of relative biotic interaction intensity (RII) than was salinity or flooding, suggesting that productivity is a better indicator of plant stress than salinity or flooding gradients. Fourth, facilitation played a role in mediating the distribution patterns of some plants. Our results illustrate that even apparently simple abiotic gradients can encompass surprisingly complex processes mediating plant distributions.  相似文献   
173.
Eelgrass Zostera marina is an ecosystem-engineering species of outstanding importance for coastal soft sediment habitats that lives in widely diverging habitats. Our first goal was to detect divergent selection and habitat adaptation at the molecular genetic level; hence, we compared three pairs of permanently submerged versus intertidal populations using genome scans, a genetic marker-based approach. Three different statistical approaches for outlier identification revealed divergent selection at 6 loci among 46 markers (6 SNPs, 29 EST microsatellites and 11 anonymous microsatellites). These outlier loci were repeatedly detected in parallel habitat comparisons, suggesting the influence of habitat-specific selection. A second goal was to test the consistency of the general genome scan approach by doubling the number of gene-linked microsatellites and adding single nucleotide polymorphism (SNP) loci, a novel marker type for seagrasses, compared to a previous study. Reassuringly, results with respect to selection were consistent among most marker loci. Functionally interesting marker loci were linked to genes involved in osmoregulation and water balance, suggesting different osmotic stress, and reproductive processes (seed maturation), pointing to different life history strategies. The identified outlier loci are valuable candidates for further investigation into the genetic basis of natural selection.  相似文献   
174.
Madin EM  Gaines SD  Warner RR 《Ecology》2010,91(12):3563-3571
The indirect, ecosystem-level consequences of ocean fishing, and particularly the mechanisms driving them, are poorly understood. Most studies focus on density-mediated trophic cascades, where removal of predators alternately causes increases and decreases in abundances of lower trophic levels. However, cascades could also be driven by where and when prey forage rather than solely by prey abundance. Over a large gradient of fishing intensity in the central Pacific's remote northern Line Islands, including a nearly pristine, baseline coral reef system, we found that changes in predation risk elicit strong behavioral responses in foraging patterns across multiple prey fish species. These responses were observed as a function of both short-term ("acute") risk and longer-term ("chronic") risk, as well as when prey were exposed to model predators to isolate the effect of perceived predation risk from other potentially confounding factors. Compared to numerical prey responses, antipredator behavioral responses such as these can potentially have far greater net impacts (by occurring over entire assemblages) and operate over shorter temporal scales (with potentially instantaneous response times) in transmitting top-down effects. A rich body of literature exists on both the direct effects of human removal of predators from ecosystems and predators' effects on prey behavior. Our results draw together these lines of research and provide the first empirical evidence that large-scale human removal of predators from a natural ecosystem indirectly alters prey behavior. These behavioral changes may, in turn, drive previously unsuspected alterations in reef food webs.  相似文献   
175.
Understanding concealment behaviour of marine animals is vital for population surveys and captive-release programmes. The commercially valuable sea cucumber Holothuria scabra Jaeger 1833 (Holothuroidea) can display a diel burying cycle, but is it widely predictable? Circadian burying of captive H. scabra juveniles, and both juveniles and adults in the wild, was examined in New Caledonia. Groups of ten cultured juveniles in mesh chambers in a tank were monitored for 24 h. Small juveniles (1–5 g) displayed an expected diel cycle of epibenthic foraging in the afternoon and night then burial in sediments in the morning. Burial was related significantly to both light and temperature in combination. Similar groups of juveniles were handled once or three times a day for 1 week then frequency of emergence during another week was compared to unhandled controls. Handling stress, whether occasional or frequent, significantly suppressed the frequency of their afternoon emergence from sediments for 4 days. In a coastal seagrass bed, burial and emergence of H. scabra were monitored during days of opposing tidal cycles in three seasons. Adults seldom buried during the day except in the cool season. At that site, most small hatchery-produced H. scabra juveniles were buried during most of the day, while larger juveniles showed little diurnal burying. This study underscores that the circadian behaviours of marine animals can exhibit substantial spatial variation, may be absent at certain sites or seasons, and can be mediated by a complexity of factors that vary over short timescales.  相似文献   
176.
Aedes albopictus has been the fastest spreading invasive animal species in the world from the mid-1980s until the mid-2000s. In areas it infests, it disrupts native mosquito ecology and can potentially vector up to 21 viruses. To better understand the population dynamics of this species, we created a temperature dependent population model. A stage-structured model was chosen to allow each life-stage to have different temperature dependent mortality and development rates, and each stage was modeled with an ordinary differential equation. Model parameters and distributions were based upon literature values. Initially, a basic model was constructed. This model then had parameters that were forced based upon daily average temperatures. Several criteria were used to evaluate the model, including a comparison to field data from Lubbock, TX. In a stochastic version of the model, a 95% confidence limit contained 70.7% of the field data points. Based upon these results, we feel reasonably confident that we have captured the role of temperature in driving the population dynamics of Ae. albopictus.  相似文献   
177.
How a landscape is represented is an important structural assumption in spatially-explicit simulation models. Simple models tend to specify just habitat and non-habitat (binary), while more complex models may use multiple levels or a continuum of habitat quality (continuous). How these different representations influence model projections is unclear. To assess the influence of landscape representation on population models, I developed a general, individual-based model with local dispersal and examined population persistence across binary and continuous landscapes varying in the amount and fragmentation of habitat. In binary and continuous landscapes habitat and non-habitat were assigned a unique mean suitability. In continuous landscapes, suitability of each individual site was then drawn from a normal distribution with fixed variance. Populations went extinct less often and abundances were higher in continuous landscapes. Production in habitat and non-habitat was higher in continuous landscapes, because the range of habitat suitability sampled by randomly dispersing individuals was higher than the overall mean habitat suitability. Increasing mortality, dispersal distance, and spatial heterogeneity all increased the discrepancy between continuous and binary landscapes. The effect of spatial structure on the probability of extinction was greater in binary landscapes. These results show that, under certain circumstances, model projections are influenced by how variation in suitability within a landscape is represented. Care should be taken to assess how a given species actually perceives the landscape when conducting population viability analyses or empirical validation of theory.  相似文献   
178.
179.
In this study territory densities of field-breeding farmland birds were compared on pairwise-selected organic and conventional arable farms for two years. Differences in territory densities between the two farm types were explained examining the effects of three factors on territory densities: (1) non-crop habitats, (2) crop types and (3) within-crop factors. In both years, densities of most species did not differ between organic and conventional farms. Only skylark and lapwing were more abundant on organic farms, but only skylarks showed a consistent pattern over both years. Differences in crop types grown between the two systems were the only explaining factor for differences in densities of skylark. For lapwing, the difference was only partly due to differences in crop type, but differences in within-crop factors (probably as a result of crop management) were likely to have had an effect as well. There were no significant differences in abundance of non-crop habitats between the two farming systems, so this could not explain differences in territory densities.  相似文献   
180.
In the coming century, modern bioenergy crops have the potential to play a crucial role in the global energy mix, especially under policies to reduce carbon dioxide emissions as proposed by many in the international community. Previous studies have not fully addressed many of the dynamic interactions and effects of a policy-induced expansion of bioenergy crop production, particularly on crop yields and human food demand. This study combines an updated agriculture and land use (AgLU) model with a well-developed energy-economic model to provide an analysis of the effects of bioenergy crops on energy, agricultural and land use systems. The results indicate that carbon dioxide mitigation policies can stimulate a large production of bioenergy crops, dependent on the level of the policy. This production of bioenergy crops can lead to several impacts on the agriculture and land use system: decreases in forestland and unmanaged land, decreases in the average yield of food crops, increases in the prices of food crops, and decreases in the level of human demand of calories.
Steven J. Smith (Corresponding author)Email:
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号