首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   4篇
  国内免费   1篇
安全科学   8篇
废物处理   3篇
环保管理   42篇
综合类   16篇
基础理论   40篇
污染及防治   30篇
评价与监测   6篇
社会与环境   3篇
灾害及防治   4篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   7篇
  2016年   7篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   9篇
  2011年   10篇
  2010年   10篇
  2009年   6篇
  2008年   6篇
  2007年   6篇
  2006年   6篇
  2005年   4篇
  2004年   2篇
  2003年   7篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   5篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1968年   1篇
  1965年   2篇
排序方式: 共有152条查询结果,搜索用时 0 毫秒
81.
Toxin content (fmol cell–1) and a suite of elemental and macromolecular variables were measured in batch cultures of the dinoflagellatesAlexandrium fundyense, A. tamarense andAlexandrium sp. from the southern New England region, USA. A different perspective was provided by semicontinuous cultures which revealed sustained, steady-state physiological adaptations by cells to N and P limitation. Two types of variability were investigated. In batch culture, changes in nutrient availability with time caused growth stage variability in toxin content, which often peaked in mid-exponential growth. A second type of variability that could be superimposed on growth stage differences is best exemplified by the high toxin content of cells grown at suboptimal temperatures. Calculations of the net rate of toxin production (R tox ; fmol cell–1 d–1) for these different culture treatments and modes made it possible to separate the dynamics of toxin production from cell division. Over a wide range of growth rates, cells produced toxin at rates approximating those needed to replace losses to daughter cells during division. The exception to this direct proportionality was with P limitation, which was associated with a dramatic increase in the rate of toxin production as cells stopped dividing due to nutrient limitation in batch culture. Growth stage variability in batch culture thus reflects small imbalances (generally within a factor of two) between the specific rates of toxin production and cell division. N limitation and CO2 depletion both affect pathways involved in toxin synthesis before those needed for cell division; P limitation does the opposite. The patterns of toxin accumulation were the same as for major cellular metabolites or elemental pools. The highest rates of toxin production appear to result from an increased availability of arginine (Arg) within the cell, due to either a lack of competition for this amino acid from pathways involved in cell division or to increased de novo synthesis. There were no significant changes in toxin content with either acclimated growth at elevated salinity, or with short term increases or decreases of salinity. These results demonstrate that toxin production is a complex process which, under some conditions, is closely coupled to growth rate; under other conditions, these processes are completely uncoupled. Explanations for the observed variability probably relate to pool sizes of important metabolites and to the differential response of key biochemical reactions to these pool sizes and to environmental conditions.  相似文献   
82.
83.
    
Habitat loss and fragmentation can negatively influence population persistence and biodiversity, but the effects can be mitigated if species successfully disperse between isolated habitat patches. Network models are the primary tool for quantifying landscape connectivity, yet in practice, an overly simplistic view of species dispersal is applied. These models often ignore individual variation in dispersal ability under the assumption that all individuals move the same fixed distance with equal probability. We developed a modeling approach to address this problem. We incorporated dispersal kernels into network models to determine how individual variation in dispersal alters understanding of landscape-level connectivity and implemented our approach on a fragmented grassland landscape in Minnesota. Ignoring dispersal variation consistently overestimated a population's robustness to local extinctions and underestimated its robustness to local habitat loss. Furthermore, a simplified view of dispersal underestimated the amount of habitat substructure for small populations but overestimated habitat substructure for large populations. Our results demonstrate that considering biologically realistic dispersal alters understanding of landscape connectivity in ecological theory and conservation practice.  相似文献   
84.
This study investigated whether selenium species in wheat grains could be altered by exposure to different combinations of nitrogen (N) and sulphur (S) fertilisers in an agronomic biofortification experiment. Four Australian wheat cultivars (Mace, Janz, Emu Rock and Magenta) were grown in a glasshouse experiment and exposed to 3 mg Se kg?1 soil as selenate (SeVI). Plants were also exposed to 60 mg N kg?1 soil as urea and 20 mg S kg?1 soil as gypsum in a factorial design (N + S + Se; N + Se; S + Se; Se only). Plants were grown to maturity with grain analysed for total Se concentrations via ICP-MS and Se species determined via HPLC-ICP-MS. Grain Se concentrations ranged from 22 to 70 µg Se g?1 grain (dry mass). Selenomethionine (SeMet), Se-methylselenocystine (MeSeCys), selenohomolanthionine (SeHLan), plus a large concentration of uncharacterised Se species were found in the extracts from grains. SeMet was the major Se species identified accounting for between 9 and 24 µg Se g?1 grain. Exposure to different N and S fertiliser combinations altered the SeMet content of Mace, Janz and Emu Rock grain, but not that of Magenta. MeSeCys and SeHLan were found in far lower concentrations (<4 µg Se g?1 grain). A large component of the total grain Se was uncharacterisable (>30 % of total grain Se) in all samples. When N fertiliser was applied (with or without S), the proportion of uncharacterisable Se increased between 60 and 70 % of the total grain Se. The data presented here indicate that it is possible to alter the content of individual Se species in wheat grains via biofortification combined with manipulation of N and S fertiliser regimes. This has potential significance in alleviating or combating both Se deficiency and Se toxicity effects in humans.  相似文献   
85.
         下载免费PDF全文
Mitigation translocation of nuisance animals is a commonly used management practice aimed at resolution of human–animal conflict by removal and release of an individual animal. Long considered a reasonable undertaking, especially by the general public, it is now known that translocated subjects are negatively affected by the practice. Mitigation translocation is typically undertaken with individual adult organisms and has a much lower success rate than the more widely practiced conservation translocation of threatened and endangered species. Nonetheless, the public and many conservation practitioners believe that because population‐level conservation translocations have been successful that mitigation translocation can be satisfactorily applied to a wide variety of human‐wildlife conflict situations. We reviewed mitigation translocations of reptiles, including our own work with 3 long‐lived species (Gila monsters [Heloderma suspectum], Sonoran desert tortoises [Gopherus morafkai], and western diamond‐backed rattlesnakes [Crotalus atrox]). Overall, mitigation translocation had a low success rate when judged either by effects on individuals (in all studies reviewed they exhibited increased movement or increased mortality) or by the success of the resolution of the human–animal conflict (translocated individuals often returned to the capture site). Careful planning and identification of knowledge gaps are critical to increasing success rates in mitigation translocations in the face of increasing pressure to find solutions for species threatened by diverse anthropogenic factors, including climate change and exurban and energy development. Problemas con la Mitigación por Traslocación de Herpetofauna  相似文献   
86.
87.
Plastic tarps are commonly used in raised bed strawberry production to minimize emissions of preplant soil fumigants and are left in place throughout the growing season as part of the standard cultural practices. Soil amendments with chemicals such as thiosulfate (S2O3(2-)) can reduce fumigant emissions. A field study was conducted near Santa Maria, CA to determine the effects of low density polyethylene (LDPE) and virtually impermeable film (VIF) over raised-beds and applying potassium thiosulfate (KTS) in furrows on reducing chloropicrin (CP) emissions from a strawberry field. Four fields (or treatments) were tested with 224 kg ha(-1) CP drip-applied threecm under the soil surface. The CP flux from bed tops and furrows and gas-phase concentrations under the tarps were monitored for five d. The CP emission flux and concentration under tarp were highest immediately following application. Diurnal temperature change affected CP concentration and emission fluxes (higher values during the day and lower at night). Slightly higher CP cumulative emission occurred using LDPE tarp (19%) compared to VIF (17%). Normalized flux (CP emission flux from the beds divided by CP concentration under the tarp) being estimated from field measurement was slightly higher for LDPE than VIF indicating different tarp permeability in the field. Because of extremely low emissions from the furrows (<0.2% of total emission loss), KTS application to furrow treatments did not show further emission reductions than non-KTS treatments. This indicates that emission reduction should focus on the tarp above raised-beds when fumigant was drip-applied near bed-surface.  相似文献   
88.
89.
Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. This "produced water" is characterized by saline water containing a variety of pollutants, including water soluble and immiscible organics and many inorganic species. To reuse produced water, removal of both the inorganic dissolved solids and organic compounds is necessary. In this research, the effectiveness of a pretreatment system consisting of surfactant modified zeolite (SMZ) adsorption followed by a membrane bioreactor (MBR) was evaluated for simultaneous removal of carboxylates and hazardous substances, such as benzene, toluene, ethylbenzene, and xylenes (BTEX) from saline-produced water. A laboratory-scale MBR, operated at a 9.6-hour hydraulic residence time, degraded 92% of the carboxylates present in synthetic produced water. When BTEX was introduced simultaneously to the MBR system with the carboxylates, the system achieved 80 to 95% removal of BTEX via biodegradation. These results suggest that simultaneous biodegradation of both BTEX and carboxylate constituents found in produced water is possible. A field test conducted at a produced water disposal facility in Farmington, New Mexico confirmed the laboratory-scale results for the MBR and demonstrated enhanced removal of BTEX using a treatment train consisting of SMZ columns followed by the MBR. While most of the BTEX constituents of the produced water adsorbed onto the SMZ adsorption system, approximately 95% of the BTEX that penetrated the SMZ and entered the MBR was biodegraded in the MBR. Removal rates of acetate (influent concentrations of 120 to 170 mg/L) ranged from 91 to 100%, and total organic carbon (influent concentrations as high as 580 mg/L) ranged from 74 to 92%, respectively. Organic removal in the MBR was accomplished at a low biomass concentration of 1 g/L throughout the field trial. While the transmembrane pressure during the laboratory-scale tests was well-controlled, it rose substantially during the field test, where no pH control was implemented. The results suggest that pretreatment with an SMZ/MBR system can provide substantial removal of organic compounds present in produced water, a necessary first step for many water-reuse applications.  相似文献   
90.
In this study, methods and approaches were developed and tested to assess changes in contaminant fluxes resulting from dam removal in a riverine system. Sediment traps and passive samplers were deployed to measure particulate and dissolved polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the water column prior to and following removal of a small, low-head dam in the Pawtuxet River, an urbanized river located in Cranston, RI, USA. During the study, concentrations of particulate and dissolved PAHs ranged from 21.5 to 103 μg/g and from 68 to 164 ng/L, respectively. Overall, temporal trends of PAHs showed no increases in either dissolved or particulate phases following removal of the dam. Dissolved concentrations of PCBs were very low, remaining below 1.72 ng/L at all sites. Particulate PCB concentrations across sites and time showed slightly greater variability, ranging from 80 to 469 ng/g, but with no indication that dam removal influenced any increases. Particulate PAHs and PCBs were sampled continuously at the site located below the dam and did not show sustained increases in concentration resulting from dam removal. The employment of passive sampling technology and sediment traps was highly effective in monitoring the concentrations and flux of contaminants moving through the river system. Variations in river flow had no effect on the concentration of contaminants in the dissolved or particulate phases, but did influence the flux rate of contaminants exiting the river. Overall, dam removal did not cause measurable sediment disturbance or increase the concentration or fluxes of dissolved or particulate PAHs and PCBs. This is due in large part to low volumes of impounded sediment residing above the dam and highly armored sediments in the river channel, which limited erosion. Results from this study will be used to improve methods and approaches that assess the short- and long-term impacts ecological restoration activities such as dam removal have on the release and transport of sediment-bound contaminants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号