首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   3篇
  国内免费   5篇
安全科学   6篇
废物处理   37篇
环保管理   59篇
综合类   45篇
基础理论   135篇
污染及防治   167篇
评价与监测   111篇
社会与环境   27篇
灾害及防治   1篇
  2023年   16篇
  2022年   50篇
  2021年   32篇
  2020年   11篇
  2019年   11篇
  2018年   19篇
  2017年   14篇
  2016年   29篇
  2015年   17篇
  2014年   28篇
  2013年   58篇
  2012年   27篇
  2011年   32篇
  2010年   35篇
  2009年   23篇
  2008年   33篇
  2007年   27篇
  2006年   22篇
  2005年   14篇
  2004年   11篇
  2003年   13篇
  2002年   15篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1992年   4篇
  1991年   1篇
  1989年   2篇
  1984年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
  1964年   1篇
  1961年   3篇
  1960年   1篇
  1958年   1篇
  1957年   1篇
排序方式: 共有588条查询结果,搜索用时 15 毫秒
511.
Gaseous ammonia (NH3) is the most abundant alkaline gas in the atmosphere. In addition, it is a major component of total reactive nitrogen. The largest source of NH3 emissions is agriculture, including animal husbandry and NH3-based fertilizer applications. Other sources of NH3 include industrial processes, vehicular emissions and volatilization from soils and oceans. Recent studies have indicated that NH3 emissions have been increasing over the last few decades on a global scale. This is a concern because NH3 plays a significant role in the formation of atmospheric particulate matter, visibility degradation and atmospheric deposition of nitrogen to sensitive ecosystems. Thus, the increase in NH3 emissions negatively influences environmental and public health as well as climate change. For these reasons, it is important to have a clear understanding of the sources, deposition and atmospheric behaviour of NH3. Over the last two decades, a number of research papers have addressed pertinent issues related to NH3 emissions into the atmosphere at global, regional and local scales. This review article integrates the knowledge available on atmospheric NH3 from the literature in a systematic manner, describes the environmental implications of unabated NH3 emissions and provides a scientific basis for developing effective control strategies for NH3.  相似文献   
512.
Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,3,4-benzo-dioxathiepin-3-oxide) is a cyclodiene organochlorine currently used as an insecticide all over the world and its residues are posing a serious environmental threat. This study reports the enrichment and isolation of a microbial culture capable of degrading endosulfan with minimal production of endosulfan sulfate, the toxic metabolite of endosulfan, from tropical acid soil. Enrichment was achieved by using the insecticide as sole sulfur source. The enriched microbial culture, SKL-1, later identified as Pseudomonas aeruginosa, degraded up to 50.25 and 69.77 % of α and β endosulfan, respectively in 20 days. Percentage of bioformation of endosulfan sulfate to total formation was 2.12% by the 20th day of incubation. Degradation of the insecticide was concomitant with bacterial growth reaching up to an optical density of 600 nm (OD600) 2.34 and aryl sulfatase activity of the broth reaching up to 23.93 μg pNP/mL/hr. The results of this study suggest that this novel strain is a valuable source of potent endosulfan–degrading enzymes for use in enzymatic bioremediation. Further, the increase in aryl sulfatase activity of the broth with the increase in degradation of endosulfan suggests the probable involvement of the enzyme in the transformation of endosulfan to its metabolites.  相似文献   
513.
The utilization of sustainable and biodegradable lignocellulosic fiber to detoxify the noxious Cr(VI) from wastewater is considered a versatile approach to clean up a contaminated aquatic environment. The aim of the present research is to assess the proficiency and mechanism of biosorption on Ficus carica bast fiber via isotherm models (Langmuir, Freundlich, Temkin, Harkin’s–Jura, and Dubinin–Radushkevich), kinetic models, and thermodynamic parameters. The biomass extracted from fig plant was characterized by scanning electron microscopy and Fourier-transform infrared spectroscopy. To optimize the maximum removal efficiency, different parameters like effect of initial concentration, effect of temperature, pH, and contact time were studied by batch method. The equilibrium data were best represented by the Langmuir isotherm model, and the maximum adsorption capacity of Cr(VI) onto biosorbent was found to be 19.68 mg/g. The pseudo-second-order kinetic model adequately described the kinetic data. The calculated values of thermodynamic parameters such as enthalpy change (?H 0), entropy change (?S 0), and free energy change (?G 0) were 21.55 kJ/mol, 76.24 J/mol?K, and ?1.55 kJ/mol, respectively, at 30 °C which accounted for spontaneous and endothermic processes. The study of adsorbent capacity for Cr(VI) removal in the presence of Na+, Mg2+, Ca2+, SO 4 2? , HCO 3 ? and Cl? illustrated that the removal of Cr(VI) increased in the presence of HCO3? ions; the presence of Na+, SO 4 2? or Cl? showed no significant influence on Cr(VI) adsorption, while Ca2+ and Mg2+ ions led to an insignificant decrease in Cr(VI) adsorption. Further, the desorption studies illustrated that 31.10 % of metal ions can be removed from an aqueous system, out of which 26.63 % of metal ions can be recovered by desorption in first cycle and the adsorbent can be reused. The results of the scale-up study show that the ecofriendly detoxification of Cr(VI) from aqueous systems was technologically feasible.  相似文献   
514.
A Mg0/Pd(+4) bimetallic system was evaluated to dechlorinate endosulfan and lindane in the aqueous phase. Studies were conducted with endosulfan and lindane separately, with or without acid in a 1:1 (v/v) water:acetone phase. In the absence of any acid, higher degradation of endosulfan and lindane was observed using Mg0/Pd(+4) doses of 10/0.5 and 4/0.1 mg/mL, respectively. Acetone plays an important role in facilitating the dechlorination reaction by increasing the solubilities of pesticides. Dechlorination kinetics for endosulfan and lindane (30 and 50 mg/L [30 and 50 ppm] concentration of each pesticide) were conducted with varying Mg0/Pd(+4) doses, and the time-course profiles were well-fitted into exponential curves. The optimum observed rate constants (k(obs)) for endosulfan and lindane were obtained with Mg0/Pd(+4) doses of 5/0.5 and 4/0.1 mg/mL, respectively. Gas chromatography-mass spectrometry analyses revealed that endosulfan and lindane were dechlorinated completely into their hydrocarbon skeletons-Bicyclo [2,2,1] hepta 2-5 diene and benzene, respectively.  相似文献   
515.
Kumar A  Sharma B  Pandey RS 《Chemosphere》2011,83(4):492-501
In the present study, two fresh water fishes namely, Channa punctatus and Clarias batrachus, were exposed to three sub-acute concentrations of synthetic pyrethroid, cypermethrin, for 96 h to evaluate the role of amino acids in fulfilling the immediate energy needs of fishes under pyrethroid induced stress as well as to find out the mechanism of ammonia detoxification. The experiments were designed to estimate the levels of free amino acid, urea, ammonia and the activities of aspartate aminotransferase (AAT), alanine aminotransferase (AlAT), glutamate dehydrogenase (GDH), glutamine synthetase (GS) and arginase in some of the vital organs like brain, gills, liver, kidney and muscle of both fish species. The significant decrease in the levels of amino acids concomitant with remarkable increase in the activities of AAT, AlAT and GDH in these vital tissues of fish species elucidated the amino acid catabolism as one of the main mechanism of meeting out the immediate energy demand of the fishes in condition of cypermethrin exposure. The levels of ammonia were significantly increased at 10% of 96 h LC(50) of cypermethrin in the different organs such as brain, gills, liver, kidney and muscle of both fish species while 15% and 20% concentrations of 96 h LC(50) of cypermehrin registered remarkable decline in both fish species. The differential increment in the activities of GDH, GS and arginase and in the level of urea established three different alternative mechanisms of ammonia detoxification. The results indicated that in C. punctatus, the prevalent mode of nitrogen excretion is in the form of conversion of ammonia into glutamine and glutamate while in C. batrachus, the excessive nitrogen is excreted in the form of urea synthesized from ammonia.  相似文献   
516.
Arsenic (As) contaminated aquifers contain iron minerals and clays that strongly bind As at their surfaces. It was suggested that As mobilization is driven by natural organic matter (including fulvic acids (FA) and humic acids (HA)) present in the aquifers either via providing reducing equivalents for reductive dissolution of Fe(III) (hydr)oxides or via competitive desorption of As from the mineral surfaces. In the present study we quantified sorption of As(III) and As(V) to Ca(2+)-homoionized illite (IL) and to kaolinite (Kao) as well as to HA-coated clays, i.e., illite-HA (IL-HA) and kaolinite-HA (Kao-HA) at neutral pH. Clay-HA complexes sorbed 28-50% more As than clay-only systems upon addition of 100μM As(III)/As(V) to 0.5g of clay or HA-clay with Ca(2+) probably playing an important role for HA binding to the clay surface and As binding to the HA. When comparing sorption of As(V) and As(III) to clay and HA-clay complexes, As(V) sorption was generally higher by 15-32% than sorption of As(III) to the same complexes. IL and IL-HA sorbed 11-28% and 6-11% more As compared to Kao and Kao-HA, respectively. In a second step, we then followed desorption of As from Kao, Kao-HA, IL and IL-HA by 100 and 500μM phosphate or silicate both at high (0.41-0.77μmol As/g clay), and low (0.04 to 0.05μmol As/g clay) As loadings. Phosphate desorbed As to a larger extent than silicate regardless of the amount of As loaded to clay minerals, both in the presence and absence of HA, and both for illite and kaolinite. At high loadings of As, the desorption of both redox species of As from clay-HA complexes by phosphate/silicate ranged from 32 to 72% compared to 2-54% in clay only systems meaning that As was desorbed to a larger extent from HA-coated clays compared to clay only systems. When comparing As(III) desorption by phosphate/silicate to As(V) desorption in high As-loading systems, there was no clear trend for which As species is desorbed to a higher extent in the four clay systems meaning that both As species behave similarly regarding desorption from clay surfaces by phosphate/silicate. Similarly, no significant differences were found in high As-loading systems in the amount of As desorbed by phosphate/silicate when comparing Kao vs. IL and Kao-HA vs IL-HA systems meaning that both clay types behave similarly regarding desorption of As by phosphate/silicate. At low As loadings, up to 80% of As was desorbed by phosphate and silicate with no noticeable differences being observed between different As species, different types of clay, clay vs clay-HA or the type of desorbant (phosphate and silicate). The results of this study showed that HA sorption to Ca(2+)-homoionized clay minerals can increase As binding to the clay although the As sorbed to the clay-HA is also released to a greater extent by competing ions such as phosphate and silicate. Desorption of As depended on the initial loadings of As onto the clay/clay-HA. Based on our results, the effect of humic substances on sorption of As and on desorption of As by phosphate and silicate has to be considered in order to fully understand and evaluate the environmental behavior of As in natural environments.  相似文献   
517.
The purpose of the paper is to assess the inclusion of social sustainability in the decisions of supply chain in multinational manufacturing organisations in India. Indian organisations are resorting to sustainability-based reporting for greater transparency and for creation of brand value for their organisations. There are tremendous economic upheavals and changes across the complete value chain, and thus, responsible business practices are becoming a necessity for the long-term survival of organisations. Sustainability, as a strategy, is responsible utilisation of resources and is reported through social, economic and environmental factors in an organisation. For sustainability as a strategy, there has to be a complete organisational inclusion and employee engagement through decision making at operational levels along the value chain. The research paper is an empirical study done through a survey using a structured questionnaire to collect information to evaluate decision criteria particularly for social sustainability, from the middle and top level executives in Indian manufacturing organisations. Multinational manufacturing organisations in India are trying to be more responsible because of mandated CSR policy, and thus, sustainability through social factors is getting more prominence. A multiple linear regression analysis is used to explain the correlation and inclusion of social factors on the decision-making process in the supply chain of multinational manufacturing organisations in India. This study reveals that decision making in the supply chain of multinational manufacturing organisations in India specifically in manufacturing industry is incorporating social sustainability. The study highlights that decision making involving social sustainability needs larger frameworks for organisational preference. While the study provides evidence of social sustainability-based practices in multinational manufacturing organisations in India, it does not deal with social sustainability practices. The study also has limitation as has been limited to organisations which follow sustainability practices and make disclosures through GRI framework.  相似文献   
518.
We present here a study of the sintering of fly ash and its mixture with low alkali pyrophyllite in the presence of sodium hexa meta phosphate (SHMP), a complex activator of sintering, for the purpose of wall tile manufacturing. The sintering of fly ash with SHMP in the temperature range 925-1050 degrees C produces tiles with low impact strength; however, the incremental addition of low alkali pyrophyllite improves impact strength. The impact strength of composites with 40% (w/w) pyrophyllite in the fly ash-pyrophyllite mix satisfies the acceptable limit (19.6J/m) set by the Indian Standards Institute for wall tiles. Increasing the pyrophyllite content results in an increase in the apparent density of tiles, while shrinkage and water absorption decrease. The strength of fly ash tiles is attributed to the formation of a silicophosphate phase; in pyrophyllite rich tiles, it is attributed to the formation of a tridymite-structured T-AlPO(4) phase. Scanning electron micrographs show that the reinforcing rod shaped T-AlPO(4) crystals become more prominent as the pyrophyllite content increases in the sintered tiles.  相似文献   
519.
The present investigation covers immobilization of TiO2 using a simple solid state dispersion technique over mesoporous Al-MCM-41 support for the treatment of isoproturon herbicide. Catalysts are characterized by XRD, X-ray photo electron spectroscopy (XPS), surface area, UV-Vis diffused reflectance spectra (DRS), SEM and TEM. A detailed photocatalytic degradation study of isoproturon under solar light in aqueous suspensions is reported. The 10 wt% TiO2/Al-MCM-41 composite system found to be optimum with high degradation activity. The reaction follows pseudo-first order kinetics. The parameters like TiO2 loading over Al-MCM-41, amount of catalyst, concentration of substrate, pH effect, durability of the catalyst, activity comparison of TiO2 and Al-MCM-41 supported system are studied. The mineralization of isoproturon is monitored by TOC. Based on the degradation products detected through LC-MS, a plausible degradation mechanism is proposed. The data indicates that TiO2/Al-MCM-41 composite system is an effective photocatalyst for treatment of isoproturon in contaminated water.  相似文献   
520.
Photocatalytic degradation and mineralization of pesticides are studied over TiO(2) supported mesoporous SBA-15 composite system using solar light. TiO(2) is immobilized over SBA-15 by solid sate dispersion method. The catalysts are characterized by XRD, surface area, UV-Vis diffused reflectance spectra, SEM and TEM. The detailed photocatalytic degradation studies are carried out over TiO(2), SBA-15 and different TiO(2) wt% supported SBA-15. The activity evaluation parameters such as catalyst amount, pH, and pollutant initial concentration are studied taking isoproturon as a model compound and established conditions for pesticide degradation. The optimum degradation is achieved over 10 wt% TiO(2)/SBA-15 within 30 min and the reaction is following pseudo-first order kinetics. The isoproturon mineralization is monitored with TOC reduction and it takes around 9h for disappearance. The commercial pesticide solutions containing imidacloprid and phosphamidon are also successfully degraded over these composites with the established conditions. The data indicates that 10 wt% TiO(2)/SBA-15 composite is an effective and highly active system for the pesticide degradations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号