首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   0篇
  国内免费   2篇
安全科学   2篇
废物处理   4篇
环保管理   10篇
综合类   9篇
基础理论   24篇
环境理论   1篇
污染及防治   66篇
评价与监测   22篇
社会与环境   6篇
  2023年   3篇
  2022年   7篇
  2021年   7篇
  2020年   4篇
  2019年   3篇
  2018年   8篇
  2017年   4篇
  2016年   8篇
  2015年   4篇
  2014年   7篇
  2013年   23篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   7篇
  2006年   12篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
111.
Environmental Science and Pollution Research - Coronaviruses are terrifically precise and adapted towards specialized respiratory epithelial cells, observed in organ culture and human volunteers...  相似文献   
112.
Environmental Science and Pollution Research - The subsurface leaching of soluble chemicals in a fractured porous medium poses long-term risk of groundwater contamination. Tracing the occurrence,...  相似文献   
113.
Environmental Chemistry Letters - Gene delivery is the process of introducing foreign genetic material, such as DNA or RNA, into host cells. Gene...  相似文献   
114.
The 3-carboxycoumarin is a major heterocycle in many biologically active agents, including anti-cancer, antibacterial and cosmetics. 3-Carboxycoumarins are also involved in the actions of plant growth hormones and growth regulators. Many catalytic systems have been used for the synthesis of 3-carboxycoumarins but such systems present issues such as harsh reaction conditions, tedious work-up and use of toxic solvents. Therefore, here we tested the synthesis of 3-carboxycoumarins by one-pot Knoevenagel condensation and intramolecular cyclization of various 2-hydroxybenzaldehydes with meldrum’s acid, using water extract of banana. Products were obtained in 76–94% yields in 420–490 min at room temperature by simple filtration.  相似文献   
115.
Environmental Science and Pollution Research - Hydrogen additives to Simarouba glauca vegetable oil (SO) are a common method for addressing the difficulties in combustion caused by SO’s poor...  相似文献   
116.
Environmental Science and Pollution Research - Food materials are consumed for nutritional purposes in the form of fruits, vegetables, plants, and meat. These contain proteins, carbohydrates, and...  相似文献   
117.
Adoption of hydrogen economy by means of using hydrogen fuel cells is one possible solution for energy crisis and climate change issues. Polymer electrolyte membrane (PEM) fuel cell, which is an important type of fuel cells, suffers from the problem of water management. Cross-flow is induced in some flow field designs to enhance the water removal. The presence of cross-flow in the serpentine and interdigitated flow fields makes them more effective in proper distribution of the reactants on the reaction layer and evacuation of water from the reaction layer than diffusion-based conventional parallel flow fields. However, too much of cross-flow leads to flow maldistribution in the channels, higher pressure drop, and membrane dehydration. In this study, an attempt has been made to quantify the amount of cross-flow required for effective distribution of reactants and removal of water in the gas diffusion layer. Unit cells containing two adjacent channels with gas diffusion layer (GDL) and catalyst layer at the bottom have been considered for the parallel, interdigitated, and serpentine flow patterns. Computational fluid dynamics-based simulations are carried out to study the reactant transport in under-the-rib area with cross-flow in the GDL. A new criterion based on the Peclet number is presented as a quantitative measure of cross-flow in the GDL. The study shows that a cross-flow Peclet number of the order of 2 is required for effective removal of water from the GDL. Estimates show that this much of cross-flow is not usually produced in the U-bends of Serpentine flow fields, making these areas prone to flooding.  相似文献   
118.
Chen CS  Rao PS  Delfino JJ 《Chemosphere》2005,60(11):39-1582
The cosolvent-induced dissolution of polynuclear aromatic hydrocarbons (PAHs) from contaminated soil caused by oxygenated fuel spills was studied. Oxygenated fuel induces a solvent flushing effect on the contaminated soil due to the high content of oxygenated compounds (i.e., methanol, ethanol, and methyl tert butyl ether (MTBE)). The miscible displacement techniques were applied to evaluate the increased potential for secondary contamination in an impacted site. Significant solubility enhancement of the 18 PAHs monitored during fuel spill simulation and cosolvent flushing is clearly evident when compared to normal water dissolution. The breakthrough concentration profile for each PAH constituent was integrated over the cumulative effluent volume (i.e., the zeroth moment) to determine the total PAH mass removed during the experiment. The removal efficiency of PAHs ranges from 46.6% to 99.9% in three oxygenated fuels (i.e., M85, E85, and oxygenated gasoline) during the fuel spill. Several factors including hydrophobicity of compounds, nonequilibrium dissolution due to nonuniform coal tar distribution, and heterogeneous media properties affect the oxygenated compound-induced dissolution process. This study provides a basis to predict the facilitated transport of hydrophobic organic compounds from subsurface environment due to the cosolvent effects of oxygenated fuels.  相似文献   
119.
Abstract

Uptake of aromatic hydrocarbon vapors (benzene and phenanthrene) by typical micrometer-sized fog-water droplets was studied using a falling droplet reactor at temperatures between 296 and 316 K. Uptake of phenan-threne vapor greater than that predicted by bulk (air-water)-phase equilibrium was observed for diameters less than 200 μm, and this was attributed to surface adsorption. The experimental values of the droplet-vapor partition constant were used to obtain the overall mass transfer coefficient and the mass accommodation coefficient for both benzene and phenanthrene. Mass transfer of phenanthrene was dependent only on gas-phase diffusion and mass accommodation at the interface. However, for benzene, the mass transfer was limited by liquid-phase diffusion and mass accommodation. A large value of the mass accommodation coefficient, α = (1.4 ± 0.4) × 10?2 was observed for the highly surface-active (hydrophobic) phenanthrene, whereas a small α = (9.7 ± 1.8) × 10?5 was observed for the less hydrophobic benzene. Critical cluster numbers ranging from 2 for benzene to 5.7 for phenanthrene were deduced using the critical cluster nucleation theory for mass accommodation. The enthalpy of mass accommodation was more negative for phenanthrene than it was for benzene. Consequently, the temperature effect was more pronounced for phenanthrene. A linear correlation was observed for the enthalpy of accommodation with the excess enthalpy of solution. A natural organic carbon surrogate (Suwannee Fulvic acid) in the water droplet increased the uptake for phenanthrene and benzene, the effect being more marked for phenanthrene. A characteristic time constant analysis showed that uptake and droplet scavenging would compete for the fog deposition of phenanthrene, whereas deposition would be unimpeded by the uptake rate for benzene vapor. For both compounds, the characteristic atmospheric reaction times were much larger and would not impact fog deposition.  相似文献   
120.
Facile, selective and sensitive spectrophotometric method has been developed for the determination of carbosulfan in insecticidal formulations, fortified water, food grains, agriculture wastewater and soil samples with newly synthesized reagents. The method was based on acid and alkaline hydrolysis of the carbosulfan pesticide, and the resultant hydrolysis product of carbosulfan was coupled with 2,6-dibromo-4-methylaniline to give a yellow color product with λ max of 464 nm or interaction with 2,6-dibromo-4-nitroaniline to produce yellow colored product with λ max of 408 nm or coupling with 2,4,6-tribromoaniline to form red colored product has a λ max of 471 nm. Under optimal conditions, Beer’s law range for 2,6-dibromo-4-methylaniline (DBMA) was found to be 0.2–12.0 μg ml−1, 0.6–16.0 μg ml−1 for 2,6-dibromo-4-nitroaniline (DBNA) and 0.4–15.0 μg ml−1 for 2,4,6-tribromoaniline (TBA). The molar absorptivity of the color systems were found to be 3.112 × 104 l mol−1 cm−1 for DBMA, 3.214 × 104 l mol−1 cm−1 for DBNA and 3.881 × 104 l mol−1 cm−1 for TBA. Sandell’s of the color reactions are 0.013 μg cm−2 (DBMA), 0.012 μg cm−2 (DBNA) and 0.011 μg cm−2 (TBA) respectively. The effect of the non-target species on the determination of carbosulfan was studied to enhance the selectivity of the proposed methods. The formation of colored derivatives with the coupling agents is instantaneous and stable for 28, 30, and 26 h. Performance of the proposed methods were compared statistically in terms Student’s F and t-tests with the reported methods. An erratum to this article can be found at  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号