首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   385篇
  免费   9篇
安全科学   24篇
废物处理   22篇
环保管理   80篇
综合类   50篇
基础理论   92篇
污染及防治   89篇
评价与监测   24篇
社会与环境   7篇
灾害及防治   6篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   8篇
  2018年   6篇
  2017年   8篇
  2016年   9篇
  2015年   11篇
  2014年   10篇
  2013年   33篇
  2012年   22篇
  2011年   18篇
  2010年   17篇
  2009年   19篇
  2008年   16篇
  2007年   19篇
  2006年   21篇
  2005年   5篇
  2004年   6篇
  2003年   18篇
  2002年   17篇
  2001年   17篇
  2000年   8篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   6篇
  1995年   6篇
  1994年   6篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   8篇
  1986年   3篇
  1984年   4篇
  1982年   4篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1970年   1篇
  1966年   1篇
排序方式: 共有394条查询结果,搜索用时 31 毫秒
61.
Determining sources of neurotoxic metals in rural and urban soils is important for mitigating human exposure. Surface soil from four areas with significant clusters of mental retardation and developmental delay (MR/DD) in children, and one control site were analyzed for nine metals and characterized by soil type, climate, ecological region, land use and industrial facilities using readily available GIS-based data. Kriging, principal component analysis (PCA) and cluster analysis (CA) were used to identify commonalities of metal distribution. Three MR/DD areas (one rural and two urban) had similar soil types and significantly higher soil metal concentrations. PCA and CA results suggested that Ba, Be and Mn were consistently from natural sources; Pb and Hg from anthropogenic sources; and As, Cr, Cu, and Ni from both sources. Arsenic had low commonality estimates, was highly associated with a third PCA factor, and had a complex distribution, complicating mitigation strategies to minimize concentrations and exposures.  相似文献   
62.
63.
Qualitative proposals to control atmospheric CO2 concentrations by spreading crushed olivine rock along the Earth's coastlines, thereby accelerating weathering reactions, are presently attracting considerable attention. This paper provides a critical evaluation of the concept, demonstrating quantitatively whether or not it can contribute significantly to CO2 sequestration. The feasibility of the concept depends on the rate of olivine dissolution, the sequestration capacity of the dominant reaction, and its CO2 footprint. Kinetics calculations show that offsetting 30% of worldwide 1990 CO2 emissions by beach weathering means distributing of 5.0 Gt of olivine per year. For mean seawater temperatures of 15–25 °C, olivine sand (300 μm grain size) takes 700–2100 years to reach the necessary steady state sequestration rate and is therefore of little practical value. To obtain useful, steady state CO2 uptake rates within 15–20 years requires grain sizes <10 μm. However, the preparation and movement of the required material poses major economic, infrastructural and public health questions. We conclude that coastal spreading of olivine is not a viable method of CO2 sequestration on the scale needed. The method certainly cannot replace CCS technologies as a means of controlling atmospheric CO2 concentrations.  相似文献   
64.
Environmental Management - Parks and protected area managers use zoning to decrease interpersonal conflict between recreationists. Zoning, or segregation, of recreation—often by non-motorized...  相似文献   
65.
Adsorption of natural organic matter (NOM) on nanoparticles can have dramatic impacts on particle dispersion resulting in altered fate and transport as well as bioavailability and toxicity. In this study, the adsorption of Suwannee River humic acid (SRHA) on silver nanoparticles (nano-Ag) was determined and showed a Langmuir adsorption at pH 7 with an adsorption maximum of 28.6 mg g−1 nano-Ag. It was also revealed that addition of <10 mg L−1 total organic carbon (TOC) increased the total Ag content suspended in the aquatic system, likely due to increased dispersion. Total silver content decreased with concentrations of NOM greater than 10 mg TOC L−1 indicating an increase in nanoparticle agglomeration and settling above this concentration. However, SRHA did not have any significant effect on the equilibrium concentration of ionic Ag dissolved in solution. Exposure of Daphnia to nano-Ag particles (50 μg L−1 and pH 7) produced a linear decrease in toxicity with increasing NOM. These results clearly indicate the importance of water chemistry on the fate and toxicity of nanoparticulates.  相似文献   
66.

Purpose  

Increases in dissolved organic carbon (DOC) concentrations have been reported in surface waters worldwide in the last 10 to 20 years. The causes behind these increases have been attributed to many factors, including climate change and decreasing depositions of atmospheric sulphate ( \textSO42 - {\text{SO}}_4^{{{2} - }} ). Trends in DOC concentrations and their potential causal factors were examined in a network of 30 lakes lying in undisturbed temperate and boreal catchments in the province of Quebec, Canada.  相似文献   
67.
Feed additives can change the microbiological environment of the animal digestive track, nutrient composition of feces, and its gaseous emissions. This 2-yr field study involving commercial laying-hen houses in central Iowa was conducted to assess the effects of feeding diets containing EcoCal and corn-dried distillers grain with solubles (DDGS) on ammonia (NH3), hydrogen sulfide (H2S), and greenhouse gas (CO2, CH4, and N2O) emissions. Three high-rise layer houses (256,600 W-36 hens per house) received standard industry diet (Control), a diet containing 7% EcoCal (EcoCal) or a diet containing 10% DDGS (DDGS). Gaseous emissions were continuously monitored during the period of December 2007 to December 2009, covering the full production cycle. The 24-month test results revealed that mean NH3 emission rates were 0.58 +/- 0.05, 0.82 +/- 0.04, and 0.96 +/- 0.05 g/hen/day for the EcoCal, DDGS, and Control diet, respectively. Namely, compared to the Control diet, the EcoCal and DDGS diets reduced NH3 emission by an average of 39.2% and 14.3%, respectively. The concurrent H2S emission rates were 5.39 +/- 0.46, 1.91 +/- 0.13, and 1.79 +/- 0.16 mg/ hen/day for the EcoCal, DDGS, and Control diet, respectively. CO2 emission rates were similar for the three diets, 87.3 +/- 1.37, 87.4 +/- 1.26, and 89.6 +/- 1.6 g/hen/day for EcoCal, DDGS, and Control, respectively (P = 0.45). The DDGS and EcoCal houses tended to emit less CH4 than the Control house (0.16 and 0.12 vs. 0.20 g/hen/day) during the monitored summer season. The efficacy of NH3 emission reduction by the EcoCal diet decreased with increasing outside temperature, varying from 72.2% in February 2009 to -7.10% in September 2008. Manure of the EcoCal diet contained 68% higher ammonia nitrogen (NH3-N) and 4.7 times higher sulfur content than that of the Control diet. Manure pH values were 8.0, 8.9, and 9.3 for EcoCal, DDGS, and Control diets, respectively. This extensive field study verifies that dietary manipulation provides a viable means to reduce NH3 emissions from modern laying-hen houses.  相似文献   
68.
Diffuse pollution remains a major threat to surface waters due to eutrophication caused by phosphorus (P) transfer from agricultural land. Vegetated buffer strips (VBSs) are increasingly used to mitigate diffuse P losses from agricultural land, having been shown to reduce particulate P transfer. However, retention of dissolved P (DP) has been lower, and in some cases VBSs have increased delivery to surface waters. The aims of this review were (i) to develop a conceptual model to enhance the understanding of VBS functioning in terms of DP, (ii) to identify key processes within the model that affect DP retention and delivery, and (iii) to explore evidence for the controls on these processes. A greater understanding in these areas will allow the development of management strategies that enhance DP retention. We found evidence of a surface layer in buffer strip soils that is enriched in soluble P compared with adjacent agricultural land and may be responsible for the reported increased DP delivery. Through increased biological activity in VBSs, plants and microorganisms may assimilate P from particulates retained in the VBSs or native soil P and remobilize this P in a more soluble form. These conclusions are based on a limited amount of research, and a better understanding of biogeochemical cycling of P in buffer strip soils is required.  相似文献   
69.
The study investigated vegetative and soil properties in four created mitigation wetlands, ranging in age from three to ten years, all created in the Virginia Piedmont. Vegetation attributes included percent cover, richness (S), diversity (H′), floristic quality assessment index (FQAI), prevalence index (PI), and productivity [i.e., peak above-ground biomass (AGB) and below-ground biomass]. Soil attributes included soil organic matter (SOM), gravimetric soil moisture (GSM), pH, and bulk density (Db) for the top 10 cm. Species dominance (e.g., Juncus effusus, Scirpus cyperinus, Arthraxon hispidus) led to a lack of differences in vegetative attributes between sites. However, site-based differences were found for GSM, pH, and SOM (P < 0.001). Soil attributes were analyzed using Euclidean cluster analysis, resulting in four soil condition (SC) categories where plots were grouped based on common attribute levels (i.e., SC1 > SC2 > SC3 > SC4, trended more to less developed). When vegetation attributes were compared between SC groups, greater SOM, lower Db, more circumneutral pH, and higher GSM, all indicative of maturation, were associated with higher H′ (P < 0.05), FQAI (P < 0.05), and total and volunteer percent cover (P < 0.05), and lower AGB (P < 0.001), PI (P < 0.05), and seeded percent cover (P < 0.05). The outcome of the study shows that site age does not necessarily equate with site development with soil and vegetation developmental rates varying both within and among sites. The inclusion of soil attributes in post-construction monitoring should be required to enhance our understanding and prediction of developmental trajectory of created mitigation wetlands.  相似文献   
70.
The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science–policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2 h) quantification of microbial pollution in bathing and recreational waters. In contrast, culture-based methods can take between 18 and 96 h for sample processing. Thus, molecular tools offer an opportunity to provide a more meaningful statement of microbial risk to water-users by providing near-real-time information enabling potentially more informed decision-making with regard to water-based activities. However, complementary studies concerning the potential costs and benefits of adopting rapid methods as a regulatory tool are in short supply. We report on findings from an international Working Group that examined the breadth of social impacts, challenges, and research opportunities associated with the application of molecular tools to bathing water regulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号