首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1373篇
  免费   11篇
  国内免费   41篇
安全科学   63篇
废物处理   108篇
环保管理   126篇
综合类   125篇
基础理论   200篇
环境理论   1篇
污染及防治   535篇
评价与监测   183篇
社会与环境   73篇
灾害及防治   11篇
  2023年   40篇
  2022年   172篇
  2021年   130篇
  2020年   51篇
  2019年   61篇
  2018年   66篇
  2017年   84篇
  2016年   81篇
  2015年   33篇
  2014年   55篇
  2013年   156篇
  2012年   56篇
  2011年   76篇
  2010年   51篇
  2009年   42篇
  2008年   46篇
  2007年   39篇
  2006年   32篇
  2005年   18篇
  2004年   25篇
  2003年   17篇
  2002年   11篇
  2001年   10篇
  2000年   13篇
  1999年   6篇
  1998年   2篇
  1997年   3篇
  1995年   6篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1985年   4篇
  1984年   1篇
  1983年   4篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1970年   1篇
  1964年   2篇
  1963年   1篇
  1961年   1篇
  1959年   1篇
排序方式: 共有1425条查询结果,搜索用时 687 毫秒
91.
Organic matter amendments have been proposed as a means to enhance soil carbon stocks on degraded soils, particularly under arid climate. Soil organic carbon (SOC) plays a critical role in terrestrial carbon cycling and is central to preserving soil quality. The effects of biowaste compost (BWC) on soil carbon storage were investigated. In addition, changes in soil organic matter (SOM) and even soil organic carbon (SOC) in BWC-amended soils following different applications were studied. The added BWC quantities were as followed: BWC/soil (weight/weight (w/w) respectively: 1/8, 1/4, and 1/2). The different BWC-amended soils were assessed during 180 days under arid ambient conditions and in comparison with control soil. Results showed a significant increase in SOM and SOC with relation to BWC quantities applied. This increase was relatively clear up to 120 days, after which decrease in SOM and SOC levels were observed. Furthermore, results showed improved microbiological activities of the amended soils in comparison with the control soil. This was reflected by the increase of the amended soils’ respirometric activities as cumulative carbon dioxide carbon (C-CO2) as function of incubation time and also in terms of specific respiration expressed as C-CO2/SOC ratios.

Implications: Mediterranean soils under arid climate such as Tunisian soils are poor in organic matter content. Biowastes are potential source for soil fertilization. Composting process is the best method for the stabilization of organic matter of diverse origins. The biowaste compost amendment improves the soil organic carbon storage and enhances the soil microbial activity.  相似文献   

92.
Tripathi RD  Vajpayee P  Singh N  Rai UN  Kumar A  Ali MB  Kumar B  Yunus M 《Chemosphere》2004,54(11):1581-1588
Plants of Cassia siamea Lamk were grown in garden soil (control), fly-ash (100%) and fly-ash amended by various ameliorants (cowdung manure, press-mud, garden soil; 1:1, w/w). The plants survived in fly-ash (100%) though their growth was less in comparison to the treatments. Fly-ash+press-mud (1:1, w/w) proved to be the best combination as growth (total biomass, leaf number, photosynthetic area, total chlorophyll and protein) was significantly high in this treatment followed by cowdung manure and garden soil. Leaves and roots accumulated significant amount of Cu, Zn, Ni and and Fe. However, the concentration of all the metals was more in roots than leaves except Ni. Although, fly-ash contains high amount of metals but the metal uptake was more in the plants grown in fly-ash+press-mud mixture. Inspite of high metal availability in fly-ash and press-mud mixture, plant growth was good. This might be attributed to the some metal detoxification mechanism active in this treatment. The present study concluded that C. siamea seems to be a suitable plant for developing a vegetation cover on fly-ash dumps.  相似文献   
93.
Low dissolved oxygen (DO) concentrations occur commonly in aerobic digesters treating thickened sludge, with benefits of smaller digester size, much reduced aeration cost, and higher digestion temperature (especially important for plants in colder areas). The effects of low DO concentrations on digestion kinetics were studied using the sludge from municipal wastewater treatment plants in Akron, Ohio, and Los Lunas, New Mexico. The experiments were conducted in both batch digestion and a mixed mode of continuous, fed-batch, and batch operations. The low DO condition was clearly advantageous in eliminating the need for pH control because of the simultaneous occurrence of nitrification and denitrification. However, when compared with fully aerobic (high DO) systems under constant pH control (rare in full-scale plants), low DO concentrations and a higher solids loading had a negative effect on the specific volatile solids (VS) digestion kinetics. Nonetheless, the overall (volumetric) digestion performance depends not only on the specific digestion kinetics, but also the solids concentration, pH, and digester temperature. All of the latter factors favor the low DO digestion of thickened sludge. The significant effect of temperature on low DO digestion was confirmed in the mixed-mode study with the Akron sludge. When compared with the well-known empirical correlation between VS reduction and the product (temperature x solids retention time), the experimental data followed the same trend, but were lower than the correlation predictions. The latter was attributed to the lower digestible VS in the Akron sludge, the slower digestion at low DO concentrations, or both. Through model simulation, the first-order decay constant (kd) was estimated as 0.004 h(-1) in the mixed-mode operations, much lower than those (0.011 to 0.029 h(-1)) obtained in batch digestion. The findings suggested that the interactions among sludges with different treatment ages may have a substantially negative effect on digestion kinetics. The use of multistage digesters, especially with small front-end reactors, may be advantageous in both "process" kinetics and "biological reaction" kinetics for sludge digestion.  相似文献   
94.
In this paper, we describe the development and laboratory and field evaluation of a continuous coarse (2.5-10 microm) particle mass (PM) monitor that can provide reliable measurements of the coarse mass (CM) concentrations in time intervals as short as 5-10 min. The operating principle of the monitor is based on enriching CM concentrations by a factor of approximately 25 by means of a 2.5-microm cut point round nozzle virtual impactor while maintaining fine mass (FM)--that is, the mass of PM2.5 at ambient concentrations. The aerosol mixture is subsequently drawn through a standard tapered element oscillating microbalance (TEOM), the response of which is dominated by the contributions of the CM, due to concentration enrichment. Findings from the field study ascertain that a TEOM coupled with a PM10 inlet followed by a 2.5-microm cut point round nozzle virtual impactor can be used successfully for continuous CM concentration measurements. The average concentration-enriched CM concentrations measured by the TEOM were 26-27 times higher than those measured by the time-integrated PM10 samplers [the micro-orifice uniform deposit impactor (MOUDI) and the Partisol] and were highly correlated. CM concentrations measured by the concentration-enriched TEOM were independent of the ambient FM-to-CM concentration ratio, due to the decrease in ambient coarse particle mass median diameter with an increasing FM-to-CM concentration ratio. Finally, our results illustrate one of the main problems associated with the use of real impactors to sample particles at relative humidity (RH) values less than 40%. While PM10 concentrations obtained by means of the MOUDI and Partisol were in excellent agreement, CM concentrations measured by the MOUDI were low by 20%, and FM concentrations were high by a factor of 5, together suggesting particle bounce at low RH.  相似文献   
95.
Yacob S  Hassan MA  Shirai Y  Wakisaka M  Subash S 《Chemosphere》2005,59(11):1575-1581
Anthropogenic release of greenhouse gases, especially CO2 and CH4 has been recognized as one of the main causes of global warming. Several measures under the Kyoto Protocol 1997 have been drawn up to reduce the greenhouse gases emission. One of the measures is Clean Development Mechanisms (CDM) that was created to enable developed countries to cooperate with developing countries in emission reduction activities. In Malaysia, palm oil industry particularly from palm oil mill effluent (POME) anaerobic treatment has been identified as an important source of CH4. However, there is no study to quantify the actual CH4 emission from the commercial scale wastewater treatment facility. Hence, this paper shall address the CH4 emission from the open digesting tanks in Felda Serting Hilir Palm Oil Mill. CH4 emission pattern was recorded for 52 weeks from 3600 m3 open digesting tanks. The findings indicated that the CH4 content was between 13.5% and 49.0% which was lower than the value of 65% reported earlier. The biogas flow rate ranged between 0.8 l min−1 m−2 and 9.8 l min−1 m−2. Total CH4 emission per open digesting tank was 518.9 kg day−1. Relationships between CH4 emission and total carbon removal and POME discharged were also discussed. Fluctuation of biogas production was observed throughout the studies as a result of seasonal oil palm cropping, mill activities, variation of POME quality and quantity discharged from the mill. Thus only through long-term field measurement CH4 emission can be accurately estimated.  相似文献   
96.
Solvent extraction is used to reduce lead concentrations from millpond wastewater solids, a type of foundry process waste. Toluene and toluene mixed with di-(2-ethyl-hexyl) phosphoric acid (HDEHP) have been tried as leaching solvents. Toluene is ineffective as a solvent in extracting lead, but the toluene-HDEHP mixture effectively removes lead from solid foundry waste. The effects of the HDEHP concentration, the contact time, and the amount of solvent used on lead extraction have been investigated. The mass transfer process is rapid: contact time of 1/2 hour has been found to be sufficient to accomplish the leaching process. The concentration of HDEHP significantly impacts lead removal. The optimum concentration of HDEHP is determined to range from 0.05 to 0.1 mol/l. The Toxicity Characteristic Leaching Procedure (TCLP) test of the treated samples gives leachable lead in much lower quantities than those found in the untreated samples. Thus the solvent extraction process appears to be an effective method to significantly reduce the lead content of millpond wastewater solids.  相似文献   
97.
Plants are essential components of all ecosystems and play a critical role in environmental fate of nanoparticles. However, the toxicological impacts of nanoparticles on plants are not well documented. Titanium dioxide nanoparticles (TiO2-NPs) are produced worldwide in large quantities for a wide range of purposes. In the present study, the uptake of TiO2-NPs by the aquatic plant Spirodela polyrrhiza and the consequent effects on the plant were evaluated. Initially, structural and morphological characteristics of the used TiO2-NPs were determined using XRD, SEM, TEM and BET techniques. As a result, an anatase structure with the average crystalline size of 8nm was confirmed for the synthesized TiO2-NPs. Subsequently, entrance of TiO2-NPS to plant roots was verified by fluorescence microscopic images. Activity of a number of antioxidant enzymes, as well as, changes in growth parameters and photosynthetic pigment contents as physiological indices were assessed to investigate the effects of TiO2-NPs on S. polyrrhiza. The increasing concentration of TiO2-NPs led to the significant decrease in all of the growth parameters and changes in antioxidant enzyme activities. The activity of superoxide dismutase enhanced significantly by the increasing concentration of TiO2-NPs. Enhancement of superoxide dismutase activity could be explained as promoting antioxidant system to scavenging the reactive oxygen species. In contrast, the activity of peroxidase was notably decreased in the treated plants. Reduced peroxidase activity could be attributed to either direct effect of these particles on the molecular structure of the enzyme or plant defense system damage due to reactive oxygen species.  相似文献   
98.
Prazosin (PRZ) and levonorgestrel (LNG) are widely used as an anti-disease drugs due to their biological activity in the human body. The frequent detection of these compounds in water samples requires alternative technologies for the removal of both compounds. After electrochemical degradation of PRZ and LNG, the parent compounds could be completely removed after treatment, but the identification and characterization of by-products are necessary as well. In this study, the effects of NaCl concentration and applied voltage were investigated during the electrochemical degradation process. The results revealed that the increase of NaCl concentration and applied voltage could promote the generation of hypochlorite OCl? and then enhance the degradation of PRZ and LNG. After initial study, 6 V and 0.2 g NaCl were selected for further experiments (96% and 99% removal of PRZ and LNG after 40 min, respectively). Energy consumption was also evaluated and calculated for PRZ and LNG at 3, 6 and 8 V. Solid phase extraction (SPE) method plays an important role in enhancing the detection limit of by-products. Furthermore, characterization and identification of chlorinated and non-chlorinated by-products were conducted using an accurate liquid chromatography-time of flight/mass spectrometry LC-TOF/MS instrument. The monitoring of products during the electrochemical degradation process was performed at 6 V and 0.2 g NaCl in a 50 mL solution. The results indicated that two chlorinated products were formed during the electrochemical process. The toxicity of by-products toward E. coli bacteria was investigated at 37°C and 20 hr incubation time.  相似文献   
99.
Objective: The aim of this study was to develop a theory-based questionnaire to measure road crossing attitudes and potentially risky pedestrian behavior.

Methods: A cross-sectional validation study was carried out on a total sample of 380 young adults aged 18 to 25 years who live in Tehran, Iran. Data were collected from January 27 to May 20, 2015, using a self-administered structured pool of 76 items that was developed from research on the theory of planned behavior. A panel of subject-matter experts evaluated the items for content validity index and content validity ratio, and the questionnaire was pretested. Exploratory factor analysis (EFA) was performed to test construct validity. The Cronbach's alpha coefficient and intraclass correlation coefficient (ICC) analyses were done to assess internal consistency and stability of the scale.

Results: From the initial 76 items, 38 items were found to be appropriate for assessing the pedestrian road crossing behavior (PEROB) of young adults in Tehran. A 9-factor solution revealed an exploratory factor analysis that jointly accounted for 63.8% of the variance observed. Additional analyses also indicated acceptable results for the internal consistency with Cronbach's alpha value ranging from 0.67 to 0.88 and ICC values ranging from 0.64 to 0.96.

Conclusions: This psychometric evaluation of a self-administered instrument resulted in a reliable and valid instrument to assess young adult pedestrians' self-reported road crossing attitudes and behaviors in Tehran. Further development of the instrument is needed to assess its applicability to other road users, particularly older pedestrians.  相似文献   

100.
Wetland protection and restoration strategies that are designed to promote hydrologic resilience do not incorporate the location of wetlands relative to the main stream network. This is primarily attributed to the lack of knowledge on the effects of wetland location on wetland hydrologic function (e.g., flood and drought mitigation). Here, we combined a watershed‐scale, surface–subsurface, fully distributed, physically based hydrologic model with historical, existing, and lost (drained) wetland maps in the Nose Creek watershed in the Prairie Pothole Region of North America to (1) estimate the hydrologic functions of lost wetlands and (2) estimate the hydrologic functions of wetlands located at different distances from the main stream network. Modeling results showed wetland loss altered streamflow, decreasing baseflow and increasing stream peakflow during the period of the precipitation events that led to major flooding in the watershed and downstream cities. In addition, we found that wetlands closer to the main stream network played a disproportionately important role in attenuating peakflow, while wetland location was not important for regulating baseflow. The findings of this study provide information for watershed managers that can help to prioritize wetland restoration efforts for flood or drought risk mitigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号