全文获取类型
收费全文 | 36202篇 |
免费 | 398篇 |
国内免费 | 298篇 |
专业分类
安全科学 | 1053篇 |
废物处理 | 1389篇 |
环保管理 | 4896篇 |
综合类 | 5473篇 |
基础理论 | 10339篇 |
环境理论 | 22篇 |
污染及防治 | 9522篇 |
评价与监测 | 2227篇 |
社会与环境 | 1745篇 |
灾害及防治 | 232篇 |
出版年
2022年 | 260篇 |
2021年 | 235篇 |
2019年 | 262篇 |
2018年 | 502篇 |
2017年 | 477篇 |
2016年 | 714篇 |
2015年 | 592篇 |
2014年 | 835篇 |
2013年 | 2675篇 |
2012年 | 1055篇 |
2011年 | 1549篇 |
2010年 | 1286篇 |
2009年 | 1304篇 |
2008年 | 1557篇 |
2007年 | 1644篇 |
2006年 | 1460篇 |
2005年 | 1260篇 |
2004年 | 1207篇 |
2003年 | 1196篇 |
2002年 | 1151篇 |
2001年 | 1551篇 |
2000年 | 1085篇 |
1999年 | 666篇 |
1998年 | 521篇 |
1997年 | 524篇 |
1996年 | 536篇 |
1995年 | 589篇 |
1994年 | 526篇 |
1993年 | 463篇 |
1992年 | 495篇 |
1991年 | 453篇 |
1990年 | 473篇 |
1989年 | 497篇 |
1988年 | 415篇 |
1987年 | 351篇 |
1986年 | 316篇 |
1985年 | 364篇 |
1984年 | 346篇 |
1983年 | 391篇 |
1982年 | 380篇 |
1981年 | 320篇 |
1980年 | 287篇 |
1979年 | 321篇 |
1978年 | 259篇 |
1977年 | 230篇 |
1976年 | 235篇 |
1975年 | 228篇 |
1974年 | 212篇 |
1973年 | 212篇 |
1972年 | 226篇 |
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
981.
982.
983.
984.
985.
986.
987.
988.
989.
990.
Mohammad Salehi Mohammad Mohammadi J. N. K. Rao Yves G. Berger 《Environmental and Ecological Statistics》2010,17(1):111-123
Adaptive cluster sampling (ACS) is an efficient sampling design for estimating parameters of rare and clustered populations.
It is widely used in ecological research. The modified Hansen-Hurwitz (HH) and Horvitz-Thompson (HT) estimators based on small
samples under ACS have often highly skewed distributions. In such situations, confidence intervals based on traditional normal
approximation can lead to unsatisfactory results, with poor coverage properties. Christman and Pontius (Biometrics 56:503–510,
2000) showed that bootstrap percentile methods are appropriate for constructing confidence intervals from the HH estimator.
But Perez and Pontius (J Stat Comput Simul 76:755–764, 2006) showed that bootstrap confidence intervals from the HT estimator
are even worse than the normal approximation confidence intervals. In this article, we consider two pseudo empirical likelihood
functions under the ACS design. One leads to the HH estimator and the other leads to a HT type estimator known as the Hájek
estimator. Based on these two empirical likelihood functions, we derive confidence intervals for the population mean. Using
a simulation study, we show that the confidence intervals obtained from the first EL function perform as good as the bootstrap
confidence intervals from the HH estimator but the confidence intervals obtained from the second EL function perform much
better than the bootstrap confidence intervals from the HT estimator, in terms of coverage rate. 相似文献