首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   1篇
  国内免费   10篇
安全科学   13篇
废物处理   13篇
环保管理   12篇
综合类   23篇
基础理论   35篇
污染及防治   51篇
评价与监测   14篇
社会与环境   3篇
  2022年   5篇
  2021年   6篇
  2019年   4篇
  2018年   11篇
  2017年   8篇
  2016年   6篇
  2014年   6篇
  2013年   22篇
  2012年   11篇
  2011年   15篇
  2010年   6篇
  2009年   12篇
  2008年   14篇
  2007年   9篇
  2006年   5篇
  2005年   4篇
  2004年   8篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
排序方式: 共有164条查询结果,搜索用时 156 毫秒
41.
42.
Abstract: A mix of causative mechanisms may be responsible for flood at a site. Floods may be caused because of extreme rainfall or rain on other rainfall events. The statistical attributes of these events differ according to the watershed characteristics and the causes. Traditional methods of flood frequency analysis are only adequate for specific situations. Also, to address the uncertainty of flood frequency estimates for hydraulic structures, a series of probabilistic analyses of rainfall‐runoff and flow routing models, and their associated inputs, are used. This is a complex problem in that the probability distributions of multiple independent and derived random variables need to be estimated to evaluate the probability of floods. Therefore, the objectives of this study were to develop a flood frequency curve derivation method driven by multiple random variables and to develop a tool that can consider the uncertainties of design floods. This study focuses on developing a flood frequency curve based on nonparametric statistical methods for the estimation of probabilities of rare floods that are more appropriate in Korea. To derive the frequency curve, rainfall generation using the nonparametric kernel density estimation approach is proposed. Many flood events are simulated by nonparametric Monte Carlo simulations coupled with the center Latin hypercube sampling method to estimate the associated uncertainty. This study applies the methods described to a Korean watershed. The results provide higher physical appropriateness and reasonable estimates of design flood.  相似文献   
43.
44.
ABSTRACT: Assessment and control of nutrient losses from paddy fields is important to protect water quality of lakes and streams in Korea. A four‐year field study was carried out to investigate water management practices and losses of nitrogen (N) and phosphorus (P) in rice paddy irrigation fields in southern Korea. The amount and water quality of rainfall, irrigation, surface drainage, and infiltration were measured and analyzed to estimate inputs and losses of N and P. The observed irrigation amount surpassed consumptive use, and approximately 52 to 69 percent of inflow (precipitation plus irrigation) was lost to surface drainage. Field data showed that significant amounts of irrigation water and rainfall were not effectively used for rice paddy culture. Water quality data indicated that drainage from paddy fields could degrade the recipient water environment. The nutrient balance indicated that significant amounts of nutrients (29.5 percent of total N and 8.6 percent of total P compared to input) were lost through surface drainage. Furthermore, up to half the nutrient losses occurred during nonstorm periods. The study results indicate that inadequate water management influences N and P losses during both storm and nonstorm periods. Proper water management is required to reduce nutrient losses through surface drainage from paddy fields; this includes such measures as minimum irrigation, effective use of rainfall, adoption of proper drainage outlet structures, and minimized forced surface drainage.  相似文献   
45.
A perspirable skin is a new design concept of thermal protection system that will autonomously reduce the surface temperature in many applications such as reentry and hypersonic vehicles. A unique design features an assembly of tiles, which buckles upon heating. Potentially, a large gap can be generated through this buckling action. These tiles will be assembled and shrink-fitted within an opening on the existing skin. To induce the buckling action, each tile needs to have a unique CTE variation, which causes thermal expansion radially and thermal shrinkage tangentially. This paper concentrates on the fabrication of these tiles made of complex functionally graded materials (FGMs), and presents our effort to design and fabricate these tiles.  相似文献   
46.
Bioaerosols significantly affect atmospheric processes while they undergo long-range vertical and horizontal transport and influence atmospheric chemistry and physics and climate change. Accumulating evidence suggests that exposure to bioaerosols may cause adverse health effects, including severe disease. Studies of bioaerosols have primarily focused on their chemical composition and largely neglected their biological composition and the negative effects of biological composition on ecosystems and human health. Here, current molecular methods for the identification, quantification, and distribution of bioaerosol agents are reviewed. Modern developments in environmental microbiology technology would be favorable in elucidation of microbial temporal and spatial distribution in the atmosphere at high resolution. In addition, these provide additional supports for growing evidence that microbial diversity or composition in the bioaerosol is an indispensable environmental aspect linking with public health.  相似文献   
47.
Emission characterization of particle number as well as particle mass from three diesel passenger cars equipped with diesel particulate filter(DPF), diesel oxidation catalyst(DOC)and exhaust gas recirculation(EGR) under the vehicle driving cycles and regulatory cycle.Total particle number emissions(PNEs) decreased gradually during speed-up of vehicle from 17.3 to 97.3 km/hr. As the average vehicle speed increases, the size-segregated peak of particle number concentration shifts to smaller size ranges of particles. The correlation analysis with various particulate components such as particle number concentration(PNC),ultrafine particle number concentration(UFPNC) and particulate matter(PM) mass was conducted to compare gaseous compounds(CO, CO_2, HC and NOx). The UFPNC and PM were not only emitted highly in Seoul during severe traffic jam conditions, but also have good correlation with hydrocarbons and NOxinfluencing high potential on secondary aerosol generation. The effect of the dilution temperature on total PNC under the New European Driving Cycle(NEDC), was slightly higher than the dilution ratio. In addition, the nuclei mode(DP: ≤ 13 nm) was confirmed to be more sensitive to the dilution temperature rather than other particle size ranges. Comparison with particle composition between vehicle speed cycles and regulatory cycle showed that sulfate was slightly increased at regulatory cycle, while other components were relatively similar. During cold start test, semivolatile nucleation particles were increased due to effect of cold environment. Research on particle formation dependent on dilution conditions of diesel passenger cars under the NEDC is important to verify impact on vehicular traffic and secondary aerosol formation in Seoul.  相似文献   
48.
A pilot-scale plant consisting of an oxidation basin (OB), a neutralization basin (NB), a reaction basin (RB), and a settling basin (SB) was designed and built to conduct pilot-scale experiments. With this system, the effects of aeration and pH on ferrous oxidation and on precipitation of the oxidized products were studied systemically. The results of pilot-scale tests showed that aeration at 300 L/min was optimum for oxidation of Fe(II) in the OB, and the efficiency of oxidation of Fe(II) increased linearly with increasing retention time. However, Fe(II) was still present in the subsequent basins-NB, RB, and SB. Results from pilot-scale tests in which neutralization was excluded were used to obtain rate constants for heterogeneous and homogeneous oxidation. Oxidation of Fe(II) reached almost 100% when the pH of the mine drainage was increased to more than 7.5, and there was a linear relationship between total rate constant, log (K(total)), and pH. Absorbance changes for samples from the NB under different pH conditions were measured to determine the precipitation properties of suspended solids in the SB. Because ferrous remained in the inflow to the SB, oxidation of Fe(II) was dominant initially, resulting in increased absorbance, and the rate of precipitation was slow. However, the absorbance of the suspension in the SB rapidly dropped when pH was higher than 7.5.  相似文献   
49.
A pilot-scale plant consisting of an oxidation basin (OB), a neutralization basin (NB), a reaction basin (RB), and a settling basin (SB) was designed and built to conduct pilot-scale experiments. With this system, the effects of aeration and pH on ferrous oxidation and on precipitation of the oxidized products were studied systemically. The results of pilot-scale tests showed that aeration at 300 L/min was optimum for oxidation of Fe(II) in the OB, and the efficiency of oxidation of Fe(II) increased linearly with increasing retention time. However, Fe(II) was still present in the subsequent basins—NB, RB, and SB. Results from pilot-scale tests in which neutralization was excluded were used to obtain rate constants for heterogeneous and homogeneous oxidation. Oxidation of Fe(II) reached almost 100% when the pH of the mine drainage was increased to more than 7.5, and there was a linear relationship between total rate constant, log (K total), and pH. Absorbance changes for samples from the NB under different pH conditions were measured to determine the precipitation properties of suspended solids in the SB. Because ferrous remained in the inflow to the SB, oxidation of Fe(II) was dominant initially, resulting in increased absorbance, and the rate of precipitation was slow. However, the absorbance of the suspension in the SB rapidly dropped when pH was higher than 7.5.  相似文献   
50.
Single-wall carbon nanotubes (CNT) are one of the most attractive engineered nanomaterials due to their unique electrical, mechanical and thermal properties, and potential use in a variety of commercial products. Due to their small size, CNT could become easily airborne and reach the various environmental compartments and eventually the food chain and humans. However, the environmental fate processes and health impacts of CNT are not clear. This study investigated a method for the quantitative measurement of carbon nanotube (CNT) in natural media such soil and benthic organism tissues. Fluorescence dye Nile blue was used for noncovalent labeling of CNT to enable their fluorescence detection. Labeled nanotubes were successfully detected in soil samples as well as in worm tissue. We were also able to detect the presence of labeled carbon nanotubes in worms exposed for 1 week to CNT-laden soil, which indicates CNT may transfer through environmental food web. The method allows for laboratory measurements of CNT mass transfer and partitioning into various environmental systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号