首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5296篇
  免费   85篇
  国内免费   727篇
安全科学   180篇
废物处理   305篇
环保管理   482篇
综合类   1489篇
基础理论   1510篇
环境理论   1篇
污染及防治   1514篇
评价与监测   295篇
社会与环境   224篇
灾害及防治   108篇
  2023年   34篇
  2022年   108篇
  2021年   106篇
  2020年   62篇
  2019年   69篇
  2018年   182篇
  2017年   222篇
  2016年   308篇
  2015年   168篇
  2014年   219篇
  2013年   271篇
  2012年   643篇
  2011年   434篇
  2010年   195篇
  2009年   191篇
  2008年   209篇
  2007年   203篇
  2006年   205篇
  2005年   488篇
  2004年   590篇
  2003年   484篇
  2002年   110篇
  2001年   89篇
  2000年   67篇
  1999年   87篇
  1998年   54篇
  1997年   61篇
  1996年   34篇
  1995年   42篇
  1994年   31篇
  1993年   21篇
  1992年   26篇
  1991年   19篇
  1990年   22篇
  1989年   17篇
  1988年   5篇
  1987年   5篇
  1986年   2篇
  1985年   2篇
  1982年   2篇
  1981年   3篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
  1961年   1篇
  1958年   2篇
  1957年   1篇
排序方式: 共有6108条查询结果,搜索用时 15 毫秒
931.
通过多年的主要污染物总量减排工作,主要污染物排放量得到了有效控制,排放量大幅下降,取得了许多成绩。面对当前的主要污染物减排工作,需要抓好几个方面的工作,以更好的推动减排工作,改善环境质量。  相似文献   
932.
国家提出对挥发性有机物排放进行总量控制,本文从挥发性有机物的定性、定量、检测等方面分析了目前存在的困难和问题,并提出了初步建议。  相似文献   
933.
通过采集高尔夫球场即将淹没的果岭土壤进行实验室条件下的模拟库基样品试验,对水库扩容后蓄水初期水质的变化情况进行了研究.结果表明:库水所含主要成分pH、高锰酸钾盐指数、总氮、总磷、氨氮和硝酸盐氮分别为7.4(mg/L)、30.8(mg/L)、1.16(mg/L)、1.189(mg/L)、0.21(mg/L)和0.11(mg/L);果岭20 cm土层库基土样pH、有机质、硝酸盐氮、氨态氮和有效磷分别为6.41(mg/kg)、10.29(mg/kg)、25.48(mg/kg)、25.76(mg/kg)和140.77(mg/kg).现有库基成分会改变库水高锰酸钾盐指标的升高.库水本身的总磷和总氮含量就严重超标.果岭库基本身的磷氮含量也很高.浸泡后果岭库基土样对降低浸出物总磷的严重超标起到了对冲的作用,致使总磷含量大为降低.  相似文献   
934.
Among the mitigation strategies to prevent nitrogen (N) losses from ureic fertilizers, urease inhibitors (UIs) have been demonstrated to promote high N use efficiency by reducing ammonia (NH3) volatilization. In the last few years, some field experiments have also shown its effectiveness in reducing nitrous oxide (N2O) losses from fertilized soils under conditions of low soil moisture. An incubation experiment was carried out with the aim of assessing the main biotic mechanisms behind N2O emissions once that the UIs N-(n-butyl) thiophosphoric triamid (NBPT) and phenil phosphorodiamidate (PPDA) were applied with Urea (U) under different soil moisture conditions (40, 60 and 80 % water-filled pore space, WFPS). In the same study we tried to analyze to what extent soil WFPS regulates the effect of these inhibitors on N2O emissions. The use of PPDA in our study allowed us to compare the effect of NBPT with that of another commercially available urease inhibitor, aiming to see if the results were inhibitor-specific or not. Based on the results from this experiment, a WFPS (i.e. 60 %) was chosen for a second study (i.e. mesocosm experiment) aiming to assess the efficiency of the UIs to indirectly affect N2O emissions through influencing the pool of soil mineral N. The N2O emissions at 40 % WFPS were almost negligible, being significantly lower from all fertilized treatments than that produced at 60 and 80 % WFPS. When compared to U alone, NBPT+U reduced the N2O emissions at 60 % WFPS but had no effect at 80 % WFPS. The application of PPDA significantly increased the emissions with respect to U at 80 % WFPS whereas no significant effect was found at 60 %. At 80 % WFPS, denitrification was the main source of N2O emissions for all treatments. In the mesocosm study, the application of NBPT+U was an effective strategy to reduce N2O emissions (75 % reduction compared to U alone), due to a lower soil ammonium (NH4 +) content induced by the inhibitor. These results suggest that adequate management of the UI NBPT could provide, under certain soil conditions, an opportunity for mitigation of N2O emissions from fertilized soils.  相似文献   
935.
Steel dominates the global metal production accounting for 5 % of increase in Earth’s atmospheric carbon dioxide (CO2). Today, India is the 4th largest producer of crude steel in the world. The sector contributes around 3 % to the country’s gross domestic product (GDP) but adds 6.2 % to the national greenhouse gas (GHG) load. It accounts for 28.4% of the entire industry sector emissions, which are 23.9% of the country’s total emissions. Being a developing country, India is not obliged to cut its emissions under the Kyoto Protocol to the United Nations Framework Convention on Climate Change (FCCC), but gave voluntary commitment to reduce the emission intensity of its GDP by 20–25 % from the 2005 level by 2020. This paper attempts to find out if the Indian steel sector can help the country in fulfilling this commitment. The sector reduced its CO2 emissions per ton of steel produced by 58% from 1994 to 2007. The study generates six scenarios for future projections which show that the sector can reduce its emission intensity by 12.5 % to 63 %. But going by the conservative estimates, the sector can reduce emission intensity by 30 % to 53 %. However, actual emissions will go up significantly in every case.  相似文献   
936.
This study explored the feasibility of using residual biomass to both mitigate greenhouse gas (GHG) emissions and remediate water contaminated by hydrocarbons. Using produced (process-affected) water from Canada’s oil sands operations as a case study, activated biochar (ACB) was found to have a higher affinity to organics than activated coal and removed 75 % of total organic carbon (TOC) from produced water in steam-assisted gravity drainage (SAGD) operations or 90 % of the TOC from synthetic tailings (ST) water sample. Up to 6 Tg dry biomass year?1 would be required to treat the waters associated with the 93?×?106-m3 of bitumen recovered per year. Landfilling the spent ACB and flaring any biogas produced were estimated to provide a greater GHG benefit than the combustion of the biochar + organics for heat to offset natural gas demand. Net costs for the ACB were about 13.84?$?m?3 bitumen for SAGD operations and 1.76?$?m?3 bitumen for mining operations. The values for mining operations justify further work to create a value chain that will integrate bioprocesses into the fossil fuel industry.  相似文献   
937.
It is widely accepted that urban plant leaves can capture airborne particles. Previous studies on the particle capture capacity of plant leaves have mostly focused on particle mass and/or size distribution. Fewer studies, however, have examined the particle density, and the size and shape characteristics of particles, which may have important implications for evaluating the particle capture efficiency of plants, and identifying the particle sources. In addition, the role of different vegetation types is as yet unclear. Here, we chose three species of different vegetation types, and firstly applied an object-based classification approach to automatically identify the particles from scanning electron microscope(SEM)micrographs. We then quantified the particle capture efficiency, and the major sources of particles were identified. We found(1) Rosa xanthina Lindl(shrub species) had greater retention efficiency than Broussonetia papyrifera(broadleaf species) and Pinus bungeana Zucc.(coniferous species), in terms of particle number and particle area cover.(2) 97.9% of the identified particles had diameter ≤10 μm, and 67.1% of them had diameter ≤2.5 μm. 89.8% of the particles had smooth boundaries, with 23.4% of them being nearly spherical.(3) 32.4%–74.1% of the particles were generated from bare soil and construction activities, and 15.5%–23.0% were mainly from vehicle exhaust and cooking fumes.  相似文献   
938.
生态农村建设是当前建设社会主义新农村的重大举措,论文从农村的生态环境、基础条件和农民意识等方面,探讨了农村生态环境存在的问题,指出了加快农村生态建设的重要性,提出了加强乡镇企业环境综合整治、完善体制机制建设、发展生态农业、开展生态文明教育等措施。针对我国农村生态建设的现状和特点,探索出一种适合我国农村实际情况的可持续发展模式:以经济发展为基础,以科技应用为支点,以政府干预为手段,以制度创新为导向,以法制完善为保障,以意识提高为导向的生态农村建设。  相似文献   
939.
940.
There is huge knowledge gap in our understanding of many terrestrial carbon cycle processes. In this paper, we investigate the bounds on terrestrial carbon uptake over India that arises solely due to CO 2 -fertilization. For this purpose, we use a terrestrial carbon cycle model and consider two extreme scenarios: unlimited CO2-fertilization is allowed for the terrestrial vegetation with CO2 concentration level at 735 ppm in one case, and CO2-fertilization is capped at year 1975 levels for another simulation. Our simulations show that, under equilibrium conditions, modeled carbon stocks in natural potential vegetation increase by 17 Gt-C with unlimited fertilization for CO2 levels and climate change corresponding to the end of 21st century but they decline by 5.5 Gt-C if fertilization is limited at 1975 levels of CO2 concentration. The carbon stock changes are dominated by forests. The area covered by natural potential forests increases by about 36% in the unlimited fertilization case but decreases by 15% in the fertilization-capped case. Thus, the assumption regarding CO2-fertilization has the potential to alter the sign of terrestrial carbon uptake over India. Our model simulations also imply that the maximum potential terrestrial sequestration over India, under equilibrium conditions and best case scenario of unlimited CO2-fertilization, is only 18% of the 21st century SRES A2 scenarios emissions from India. The limited uptake potential of the natural potential vegetation suggests that reduction of CO2 emissions and afforestation programs should be top priorities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号