首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   523篇
  免费   2篇
  国内免费   26篇
安全科学   44篇
废物处理   30篇
环保管理   40篇
综合类   103篇
基础理论   69篇
污染及防治   175篇
评价与监测   56篇
社会与环境   31篇
灾害及防治   3篇
  2023年   10篇
  2022年   16篇
  2021年   16篇
  2020年   10篇
  2019年   16篇
  2018年   14篇
  2017年   9篇
  2016年   29篇
  2015年   20篇
  2014年   23篇
  2013年   41篇
  2012年   28篇
  2011年   40篇
  2010年   35篇
  2009年   37篇
  2008年   36篇
  2007年   21篇
  2006年   24篇
  2005年   17篇
  2004年   20篇
  2003年   23篇
  2002年   12篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   4篇
  1985年   3篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1970年   1篇
  1964年   1篇
排序方式: 共有551条查询结果,搜索用时 78 毫秒
41.
In this article, I explain the role that scientific studies play in shaping collaboration and conflict over mining exploration in the Ecuadorian highlands. Toronto-based IAMGOLD conducted water quality studies to simultaneously fulfill legal obligations and secure support for drilling in an environmentally sensitive zone. With these studies, IAMGOLD generated collaborative relations with local authorities and university scientists. However, water quality studies were also used by dairy farmers to establish new connections for an opposition movement. The scientific studies enabled IAMGOLD and the dairy farmers to make competing claims about the responsibility for contamination of an important watershed. This article analyzes the conflict that resulted and challenges conventional wisdom that distinguishes a corporation's legal obligations from its voluntary CSR programs.  相似文献   
42.
Ng TY  Pais NM  Dhaliwal T  Wood CM 《Chemosphere》2012,87(11):1208-1214
We tested the use of whole-body and subcellular Cu residues (biologically-active (BAM) and inactive compartments (BIM)), of the oligochaete Lumbriculus variegatus to predict Cu toxicity in fresh water. The critical whole-body residue associated with 50% mortality (CBR50) was constant (38.2-55.6 μg g−1 fresh wt.) across water hardness (38-117 mg L−1 as CaCO3) and exposure times during the chronic exposure. The critical subcellular residue (CSR50) in metal-rich granules (part of BIM) associated with 50% mortality was approximately 5 μg g−1 fresh wt., indicating that Cu bioavailability is correlated with toxicity:subcellular residue is a better predictor of Cu toxicity than whole-body residue. There was a strong correlation between the whole-body residue of L. variegatus (biomonitor) and survival of Chironomus riparius (relatively sensitive species) in a hard water Cu co-exposure. The CBR50 in L. variegatus for predicting mortality of C. riparius was 29.1-45.7 μg g−1 fresh wt., which was consistent within the experimental period; therefore use of Cu residue in an accumulator species to predict bioavailability of Cu to a sensitive species is a promising approach.  相似文献   
43.
Benzene is a representative member of volatile organic compounds and has been widely used as an industrial solvent. Groundwater contamination of benzene may pose risks to human health and ecosystems. Detection of benzene in the groundwater using chemical analysis is expensive and time consuming. In addition, biological responses to environmental exposures are uninformative using such analysis. Therefore, the aim of this study was to employ a microorganism, Euglena gracilis (E. gracilis) as a putative model to monitor the contamination of benzene in groundwater. To this end, we examined the wild type of E. gracilis Z and its mutant form, SMZ in their growth rate, morphology, chlorophyll content, formation of reactive oxygen species (ROS) and DNA damage in response to benzene exposure. The results showed that benzene inhibited cell growth in a dose response manner up to 48 h of exposure. SMZ showed a greater sensitivity compared to Z in response to benzene exposure. The difference was more evident at lower concentrations of benzene (0.005–5 μM) where growth inhibition occurred in SMZ but not in Z cells. We found that benzene induced morphological changes, formation of lipofuscin, and decreased chlorophyll content in Z strain in a dose response manner. No significant differences were found between the two strains in ROS formation and DNA damage by benzene at concentrations affecting cell growth. Based on these results, we conclude that E. gracilis cells were sensitive to benzene-induced toxicities for certain endpoints such as cell growth rate, morphological change, depletion of chlorophyll. Therefore, it is a potentially suitable model for monitoring the contamination of benzene and its effects in the groundwater.  相似文献   
44.
Uptake, accumulation and translocation of caffeine by Scirpus validus grown in hydroponic condition were investigated. The plants were cultivated in Hoagland’s nutrient solution spiked with caffeine at concentrations of 0.5–2.0 mg L?1. The effect of photodegradation on caffeine elimination was determined in dark controls and proved to be negligible. Removal of caffeine in mesocosms without plants showed however that biodegradation could account for about 15–19% of the caffeine lost from solutions after 3 and 7 d. Plant uptake played a significant role in caffeine elimination. Caffeine was detected in both roots and shoots of S. validus. Root concentrations of caffeine were 0.1–6.1 μg g?1, while the concentrations for shoots were 6.4–13.7 μg g?1. A significant (p < 0.05) positive correlation between the concentration in the root and the initial concentrations in the nutrient solution was observed. The bioaccumulation factors (BAFs) of caffeine for roots ranged from 0.2 to 3.1, while BAFs for shoots ranged from 3.2 to 16.9. Translocation from roots to shoots was the major pathway of shoot accumulation. The fraction of caffeine in the roots as a percentage of the total caffeine mass in solution was limited to 0.2–4.4% throughout the whole experiment, while shoot uptake percentage ranged from 12% to 25% for caffeine at the initial concentration of 2.0 mg L?1 to 50–62% for caffeine at the initial concentration of 0.5 mg L?1. However, a marked decrease in the concentration of caffeine in the shoots between d-14 and d-21 suggests that caffeine may have been catabolized in the plant tissues subsequent to plant uptake and translocation.  相似文献   
45.
Agarwal A  Ng WJ  Liu Y 《Chemosphere》2011,84(9):1175-1180
In recent years, microbubble and nanobubble technologies have drawn great attention due to their wide applications in many fields of science and technology, such as water treatment, biomedical engineering, and nanomaterials. In this paper, we discuss the physics, methods of generation of microbubbles (MBs) and nanobubbles (NBs), while production of free radicals from MBs and NBs are reviewed with the focuses on degradation of toxic compounds, water disinfection, and cleaning/defouling of solid surfaces including membrane. Due to their ability to produce free radicals, it can be expected that the future prospects of MBs and NBs will be immense and yet more to be explored.  相似文献   
46.
This paper reports data on the relative ability of CaO, CaCl2, MgO, MgCl2, TiO2, and hectorite (SHCa-1) to induce oxidative stress (as determined by lipid peroxidation, LP) in biological matrices. The effectiveness of structural (oxide form) versus soluble Ca and Mg to induce LP is compared. An assessment on cytotoxicity as affected by soluble and structural Ca, Mg, TiO2 and SHCa-1 is also addressed. LP was screened and monitored using the Thiobarbituric Acid Reactive Substances (TBARS). The extent of TBARS production was found to vary with the type and initial concentration of the soluble or structural cation, Ca or Mg respectively. Obtained results showed higher magnitude values for the latter set of experiments. In the presence of TiO2 no significant TBARS production was detected pointing out a negligible effect of TiO2 on LP. At solid concentrations ca. 100 ppm, CaO appears to be more effective than SHCa-1 to induce LP. By contrast at ca. 25 ppm, MgO appears to be more effective than the clay mineral. The SHCa-1 LP-inducing activity has been proven to closely relate to structural Ca. The prevalence of mechanisms that may induce LP but not cytotoxicity (as determined by cell growth inhibition) was also addressed. Results on cell growth inhibition as affected by soluble and structural Ca, Mg, TiO2 and hectorite provide evidence to support that structural Ca or Mg brings about significantly higher variations than soluble Ca.  相似文献   
47.
We review the ecological consequences of N deposition on the five Mediterranean regions of the world. Seasonality of precipitation and fires regulate the N cycle in these water-limited ecosystems, where dry N deposition dominates. Nitrogen accumulation in soils and on plant surfaces results in peaks of availability with the first winter rains. Decoupling between N flushes and plant demand promotes losses via leaching and gas emissions. Differences in P availability may control the response to N inputs and susceptibility to exotic plant invasion. Invasive grasses accumulate as fuel during the dry season, altering fire regimes. California and the Mediterranean Basin are the most threatened by N deposition; however, there is limited evidence for N deposition impacts outside of California. Consequently, more research is needed to determine critical loads for each region and vegetation type based on the most sensitive elements, such as changes in lichen species composition and N cycling.  相似文献   
48.

Purpose  

Industrial emissions can raise urban background levels of inhalable Mn particles in an order of magnitude above normal, eclipsing the contribution made by natural sources and traffic.  相似文献   
49.
This paper summarizes a study evaluating the acceptance and perceived performance of disposable cutlery made from starch-based biodegradable resins relative to nondegradable polystyrene cutlery. Two hundred forty-three sailors onboard three U.S. Navy vessels ate their lunch using either biodegradable cutlery made with resins manufactured by one of two commercial companies or polystyrene cutlery. The cutlery was rated on several sensory and performance dimensions as well as for overall acceptability. Results indicated that sailors rated both the biodegradable and the polystyrene utensils as easy to hold. There were also no differences in the perceived ease of using each of the spoons. However, compared to the polystyrene utensils, both types of biodegradable utensils were viewed as less sturdy, as having a less attractive color, and as being less acceptable overall. The biodegradable forks and knives were also rated as more difficult to use for piercing and cutting food than the polystyrene ones. In addition, several significant differences emerged between the two types of biodegradable cutlery. The results are discussed in terms of the need for continued consumer testing of products developed from biodegradable polymeric materials.  相似文献   
50.
A 105-d field experiment was conducted to determine the potential of the slow-release fertilizer, Osmocote (Scotts, Marysville, OH), to stimulate the indigenous microbial biodegradation of petroleum hydrocarbons in an oil-spiked beach sediment on an intertidal foreshore in Singapore. Triplicate microcosms containing 80 kg of weathered sediment, spiked with 5% (w/w) Arabian light crude oil and 1.2% (w/w) Osmocote pellets, were established, together with control microcosms minus Osmocote. Relative to the control, the presence of the Osmocote sustained a significantly higher level of nutrients (NH(4)(+)-N, NO(3)(-)-N, and PO(4)(3-)-P) in the sediment pore water over the duration of the experiment. The metabolic activity of the indigenous microbial biomass, as measured using an intracellular dehydrogenase enzyme assay, was also significantly enhanced over the duration of the experiment in amended sediments. The loss of total recoverable petroleum hydrocarbons (TRPH) and biodegradation of total n-alkanes (C(10)-C(33)), branched alkanes (pristane and phytane), as well as total target polycyclic aromatic hydrocarbons (PAHs) (two- to six-ring), in both the control and Osmocote-amended sediments, followed a first-order biodegradation model. The first-order loss rate of total recoverable petroleum hydrocarbons was 2.57 times greater than that of the control. The hopane-normalized rate constants for total n-alkane, branched alkane, and total target PAH biodegradation in the Osmocote-treated sediments were 3.95-, 5.50-, and 2.45-fold higher than the control, respectively. Overall, the presence of Osmocote was able to significantly enhance and accelerate the biodegradation of aliphatics and PAHs in oil-contaminated sediments under natural field conditions in an intertidal foreshore environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号