首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16400篇
  免费   172篇
  国内免费   137篇
安全科学   451篇
废物处理   628篇
环保管理   2291篇
综合类   2593篇
基础理论   4467篇
环境理论   4篇
污染及防治   4312篇
评价与监测   1005篇
社会与环境   855篇
灾害及防治   103篇
  2022年   112篇
  2021年   129篇
  2020年   106篇
  2019年   148篇
  2018年   224篇
  2017年   222篇
  2016年   356篇
  2015年   241篇
  2014年   359篇
  2013年   1275篇
  2012年   441篇
  2011年   632篇
  2010年   536篇
  2009年   519篇
  2008年   689篇
  2007年   692篇
  2006年   661篇
  2005年   508篇
  2004年   587篇
  2003年   522篇
  2002年   482篇
  2001年   705篇
  2000年   471篇
  1999年   284篇
  1998年   241篇
  1997年   218篇
  1996年   227篇
  1995年   249篇
  1994年   273篇
  1993年   220篇
  1992年   247篇
  1991年   222篇
  1990年   254篇
  1989年   238篇
  1988年   193篇
  1987年   175篇
  1986年   158篇
  1985年   169篇
  1984年   192篇
  1983年   180篇
  1982年   187篇
  1981年   179篇
  1980年   137篇
  1979年   153篇
  1978年   131篇
  1977年   118篇
  1975年   118篇
  1974年   115篇
  1973年   110篇
  1972年   134篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Simultaneous size distributions and Fourier transform infrared (FTIR) extinction spectra have been measured for several representative components of mineral dust aerosol (quartz, calcite, and dolomite) in the fine particle size mode (D=0.1–1 μm). Optical constants drawn from the published literature have been used in combination with the experimentally determined size distributions to simulate the extinction spectra. In general, Mie theory does not accurately reproduce the peak position or band shape for the prominent IR resonance features in the 800–1600 cm−1 spectral range. The resonance peaks in the Mie simulation are consistently blue shifted relative to the experimental spectra by 20–50 cm−1. Spectral simulations, derived from a simple Rayleigh-based analytic theory for a “continuous distribution of ellipsoids” particle shape model, better reproduce the experimental spectra, despite the fact that the Rayleigh approximation is not strictly satisfied in these experiments. These results differ from our previous studies of particle shape effects in silicate clay mineral dust aerosols where a disk-shaped model for the particles was found to be more appropriate.  相似文献   
972.
A passive air sampler was developed for collecting polycyclic aromatic hydrocarbons (PAHs) in air mass from various directions. The airflow velocity within the sampler was assessed for its responses to ambient wind speed and direction. The sampler was examined for trapped particles, evaluated quantitatively for influence of airflow velocity and temperature on PAH uptake, examined for PAH uptake kinetics, calibrated against active sampling, and finally tested in the field. The airflow volume passing the sampler was linearly proportional to ambient wind speed and sensitive to wind direction. The uptake rate for an individual PAH was a function of airflow velocity, temperature and the octanol-air partitioning coefficient of the PAH. For all PAHs with more than two rings, the passive sampler operated in a linear uptake phase for three weeks. Different PAH concentrations were obtained in air masses from different directions in the field test.  相似文献   
973.
Nonylphenol polyethoxylates (NPEOs) are surfactants found ubiquitously in the environment due to widespread industrial and domestic use. Biodegradation of NPEOs produces nonylphenol (NP), an endocrine disruptor. Sewage sludge application introduces NPEOs and NP into soils, potentially leading to accumulation in soils and crops. We examined degradation of NP and nonylphenol-12-ethoxylate (NP12EO) in four soils. NP12EO degraded rapidly (initial half time 0.3-5 days). Concentrations became undetectable within 70-90 days, with a small increase in NP concentrations after 30 days. NP initially degraded quickly (mean half time 11.5 days), but in three soils a recalcitrant fraction of 26-35% remained: the non-degrading fraction may consist of branched isomers, resistant to biodegradation. Uptake of NP by bean plants was also examined. Mean bioconcentration factors for shoots and seeds were 0.71 and 0.58, respectively. Removal of NP from the soil by plant uptake was negligible (0.01-0.02% of initial NP). Root concentrations were substantially higher than shoot and seed concentrations.  相似文献   
974.
Rice is a major food crop throughout the world; however, accumulation of toxic metals and metalloids in grains in contaminated environments is a matter of growing concern. Field experiments were conducted to analyze the growth performance, elemental composition (Fe, Si, Zn, Mn, Cu, Ni, Cd and As) and yield of the rice plants (Oryza sativa L. cv. Saryu-52) grown under different doses of fly-ash (FA; applied @ 10 and 100 tha(-1) denoted as FA(10) and FA(100), respectively) mixed with garden soil (GS) in combination with nitrogen fertilizer (NF; applied @ 90 and 120 kg ha(-1) denoted as NF(90) and NF(120), respectively) and blue green algae biofertilizer (BGA; applied @ 12.5 kg ha(-1) denoted as BGA(12.5)). Significant enhancement of growth was observed in the plants growing on amended soils as compared to GS and best response was obtained in amendment of FA(10)+NF(90)+BGA(12.5). Accumulation of Si, Fe, Zn and Mn was higher than Cu, Cd, Ni and As. Arsenic accumulation was detected only in FA(100) and its amendments. Inoculation of BGA(12.5) caused slight reduction in Cd, Ni and As content of plants as compared to NF(120) amendment. The high levels of stress inducible non-protein thiols (NP-SH) and cysteine in FA(100) were decreased by application of NF and BGA indicating stress amelioration. Study suggests integrated use of FA, BGA and NF for improved growth, yield and mineral composition of the rice plants besides reducing the high demand of nitrogen fertilizers.  相似文献   
975.
Harmon SM  Wyatt DE 《Chemosphere》2008,70(10):1857-1864
This research evaluated soil samples from a New Orleans neighborhood in the Chalmette, Saint Bernard Parish, that had been inundated by flooding associated with Hurricane Katrina. The goal was to determine if ecological risks persisted from flood waters that had come in contact with hazardous surface chemicals before inundating this low-lying neighborhood for a prolonged period. Research objectives were to establish the presence or absence of volatile organic and heavy metal contaminants, and then asses the toxicity of this soil to Eisenia fetida in a soil exposure assay and Caenorhabditis elegans in a simulated porewater exposure assay. Soil analysis revealed detectable levels of metals and organics in the surface soil at each location. No contaminant was detected in concentrations above human health screening values. Chromium and mercury were detected at levels in excess of typical ecological risk values. Soil extracts revealed concentrations of nitrate, sulfate, and chloride above those from an unflooded background sample. Toxicity testing resulted in no acute effects to either test species, but did show bioaccumulation of arsenic, cadmium, and lead in E. fetida exposed to several samples. The combination of mercury and sulfate provide the potential for mercury methylation should flooding and prolonged inundation occur again.  相似文献   
976.
Díaz E  Muñoz E  Vega A  Ordóñez S 《Chemosphere》2008,70(8):1375-1382
Adsorption of carbon dioxide on alkaline modified X zeolites was investigated by temperature programmed desorption (TPD) analysis of these materials previously saturated with CO(2) at 50, 100 and 200 degrees C. Parent X zeolite (in its sodium form) was treated with different sodium and cesium aqueous solutions, using both carbonates and hydroxides as precursors. The resulting materials were characterised by nitrogen physisorption, XRD, and NH(3)-TPD, in order to determine their morphological, crystallographic and chemical properties. Slight desilication phenomena were observed using hydroxides as precursors, whereas the treatment with Cs salts lead to higher crystallinity losses. Several successive adsorption-desorption cycles were carried out in order to check the regenerability of the adsorbents. Cesium-treated zeolites present higher carbon dioxide retention capacities than the sodium treated and than the parent material. When working with these Cs-modified materials, the desorption takes place mainly at temperatures between 250 and 400 degrees C, results of great practical interest, since it allows the use these kinds of materials for adsorption-desorption cycles. The evolution of the retention capacity with temperature is also markedly more positive for Cs-treated zeolite, especially when carbonate is used as the precursor. These materials maintain high retention capacities at 100 degrees C (10mg g(-1)) and even at 200 degrees C (3mg g(-1)), temperatures at which the most of the adsorbents are inactive.  相似文献   
977.
The possible application of two environmental remediation technologies - soil washing and photocatalysis - to remove and decompose various aromatic pollutants present in excavated soils of a contaminated industrial site has been investigated. Aqueous solutions containing the non-ionic surfactant Brij 35 were used to extract the contaminants from the soil samples. The photocatalytic treatment of the obtained washing wastes, performed in the presence of TiO(2) suspensions irradiated with simulated sunlight, showed a slow abatement of the toxic compounds due to the relevant concentrations of organics in the waste. A neat improvement of the process performances, obtained by operating in the presence of added potassium peroxydisulfate, suggests a feasible treatment route.  相似文献   
978.
Ozonation of oil sands process water removes naphthenic acids and toxicity   总被引:1,自引:0,他引:1  
Naphthenic acids are naturally-occurring, aliphatic or alicyclic carboxylic acids found in petroleum. Water used to extract bitumen from the Athabasca oil sands becomes toxic to various organisms due to the presence of naphthenic acids released from the bitumen. Natural biodegradation was expected to be the most cost-effective method for reducing the toxicity of the oil sands process water (OSPW). However, naphthenic acids are poorly biodegraded in the holding ponds located on properties leased by the oil sands companies. In the present study, chemical oxidation using ozone was investigated as an option for mitigation of this toxicity. Ozonation of sediment-free OSPW was conducted using proprietary technology manufactured by Seair Diffusion Systems Inc. Ozonation for 50min generated a non-toxic effluent (based on the Microtox bioassay) and decreased the naphthenic acids concentration by approximately 70%. After 130min of ozonation, the residual naphthenic acids concentration was 2mgl(-1): <5% of the initial concentration in the filtered OSPW. Total organic carbon did not change with 130min of ozonation, whereas chemical oxygen demand decreased by approximately 50% and 5-d biochemical oxygen demand increased from an initial value of 2mgl(-1) to a final value of 15mgl(-1). GC-MS analysis showed that ozonation resulted in an overall decrease in the proportion of high molecular weight naphthenic acids (n> or = 22).  相似文献   
979.
Various abiotic and biotic processes such as sorption, dilution, and degradation are known to affect the fate of organic contaminants, such as petroleum hydrocarbons in saturated porous media. Reactive transport modeling of such plumes indicates that the biodegradation of organic pollutants is, in many cases, controlled by mixing and therefore occurs locally at the plume's fringes, where electron donors and electron-acceptors mix. Herein, we aim to test whether this hypothesis can be verified by experimental results obtained from aerobic and anaerobic degradation experiments in two-dimensional sediment microcosms. Toluene was selected as a model compound for oxidizable contaminants. The two-dimensional microcosm was filled with quartz sand and operated under controlled flow conditions simulating a contaminant plume in otherwise uncontaminated groundwater. Aerobic degradation of toluene by Pseudomonas putida mt-2 reduced a continuous 8.7 mg L(-1) toluene concentration by 35% over a transport distance of 78 cm in 15.5 h. In comparison, under similar conditions Aromatoleum aromaticum strain EbN1 degraded 98% of the toluene infiltrated using nitrate (68.5+/-6.2 mg L(-1)) as electron acceptor. A major part of the biodegradation activity was located at the plume fringes and the slope of the electron-acceptor gradient was steeper during periods of active biodegradation. The distribution of toluene and the significant overlap of nitrate at the plume's fringe indicate that biokinetic and/or microscale transport processes may constitute additional limiting factors. Experimental data is corroborated with results from a reactive transport model using double Monod kinetics. The outcome of the study shows that in order to simulate degradation in contaminant plumes, detailed data sets are required to test the applicability of models. These will have to deal with the incorporation of existing parameters coding for substrate conversion kinetics and microbial growth.  相似文献   
980.
Pine wood, pine bark, oak wood and oak bark were pyrolyzed in an auger reactor. A total of 16 bio-oils or pyrolytic oils were generated at different temperatures and residence times. Two additional pine bio-oils were produced at the National Renewable Energy Laboratory in a fluidized-bed reactor at different temperatures. All these bio-oils were fractionated to obtain lignin-rich fractions which consist mainly of phenols and neutrals. The pyrolytic lignin-rich fractions were obtained by liquid-liquid extraction. Whole bio-oils and their lignin-rich fractions were studied as potential environmentally benign wood preservatives to replace metal-based CCA and copper systems that have raised environmental concerns. Each bio-oil and several lignin-rich fractions were tested for antifungal properties. Soil block tests were conducted using one brown-rot fungus (Gloeophyllum trabeum) and one white-rot fungus (Trametes versicolor). The lignin-rich fractions showed greater fungal inhibition than whole bio-oils for a impregnation solution 10% concentration level. Water repellence tests were also performed to study wood wafer swelling behavior before and after bio-oil and lignin-rich fraction treatments. In this case, bio-oil fractions did not exhibit higher water repellency than whole bio-oils. Comparison of raw bio-oils in soil block tests, with unleached wafers, at 10% and 25% bio-oil impregnation solution concentration levels showed excellent wood preservation properties at the 25% level. The good performance of raw bio-oils at higher loading levels suggests that fractionation to generate lignin-rich fractions is unnecessary. At this more effective 25% loading level in general, the raw bio-oils performed similarly. Prevention of leaching is critically important for both raw bio-oils and their fractions to provide decay resistance. Initial tests of a polymerization chemical to prevent leaching showed some success.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号