首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   2篇
  国内免费   14篇
安全科学   4篇
废物处理   20篇
环保管理   19篇
综合类   26篇
基础理论   39篇
污染及防治   90篇
评价与监测   23篇
社会与环境   33篇
灾害及防治   4篇
  2023年   4篇
  2022年   33篇
  2021年   27篇
  2020年   6篇
  2019年   8篇
  2018年   16篇
  2017年   16篇
  2016年   13篇
  2015年   8篇
  2014年   10篇
  2013年   17篇
  2012年   10篇
  2011年   14篇
  2010年   10篇
  2009年   15篇
  2008年   11篇
  2007年   4篇
  2006年   8篇
  2005年   6篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1996年   4篇
  1995年   2篇
  1991年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有258条查询结果,搜索用时 15 毫秒
141.
Environmental Science and Pollution Research - Sustainability is the biggest goal that all areas including building architecture aim at. Sustainability is created by the harmony of buildings to the...  相似文献   
142.
A number of different approaches have been used to explain the successes and failures of biodiversity conservation strategies in developing countries. However, to date, little attention has been paid toward assessing the influence of knowledge transfer between science, policy, and conservation practices in the implementation of these strategies. Vietnam’s Pu Luong Cuc Phuong Conservation Area is a globally important ecosystem, situated within a limestone landscape and inhabited by hundreds of local communities. Biodiversity conservation has become an important part of sustainable development in this area. This study analyzes three conservation strategies employed in the Pu Luong Cuc Phuong Conservation Area by applying the Research–Integration–Utilization (RIU) model of scientific knowledge transfer. Our analyses reveal weaknesses in scientific knowledge transfer arising from low-quality research and poor integration strategies. Based on our results, we developed recommendations to improve research and integration in an effort to enhance science-based policy support.  相似文献   
143.

Prediction of water quality is a critical issue because of its significant impact on human and ecosystem health. This research aims to predict water quality index (WQI) for the free surface wetland using three soft computing techniques namely, adaptive neuro-fuzzy system (ANFIS), artificial neural networks (ANNs), and group method of data handling (GMDH). Seventeen wetland points for a period of 14 months were considered for monitoring water quality parameters including conductivity, suspended solid (SS), biochemical oxygen demand (BOD), ammoniacal nitrogen (AN), chemical oxygen demand (COD), dissolved oxygen (DO), temperature, pH, phosphate nitrite, and nitrate. The sensitivity analysis performed by ANFIS indicates that the significant parameters to predict WQI are pH, COD, AN, and SS. The results indicated that ANFIS with Nash-Sutcliffe Efficiency (NSE = 0.9634) and mean absolute error (MAE = 0.0219) has better performance to predict the WQI comparing with ANNs (NSE = 0.9617 and MAE = 0.0222) and GMDH (NSE = 0.9594 and MAE = 0.0245) models. However, ANNs provided a comparable prediction and the GMDH can be considered as a technique with an acceptable prediction for practical purposes. The findings of this study could be used as an effective reference for policy makers in the field of water resource management. Decreasing variables, reduction of running time, and high speed of these approaches are the most important reasons to employ them in any aquatic environment worldwide.

  相似文献   
144.
Most water sources are full of microscopic transparent exopolymer particles (TEP), which are currently regarded as a major initiator of biofilm formation. This study developed and applied an auto-imaging FlowCAM-based method for online observation and quantification of TEP in freshwater. Samples from reservoirs in Taiwan with a wide range of water quality were directly used to develop this methodology. Factors that potentially affect the measurement were tested. The results showed that characteristics of the particles measured instantaneously after staining samples with Alcian blue differed significantly from those measured at steady states, as a result of particle aggregation. Compared to traditional microscopic methods, this proposed method provides a simple, rapid, and less labor-intensive analysis with particle morphological conservation and a large number of particle attributes. By overcoming the limitations from the former, this technique would offer routine monitoring of these transparent particles from various freshwater sources and feed water in membrane filtration, hence facilitating the use of TEP as a critical parameter for biofouling investigation in water treatment. Application of the method for Taiwan reservoirs showed a wide variety of morphological forms of TEP and its abundance, up to 25,000 ppm.  相似文献   
145.
In this study, a multi-criteria methodology is proposed to identify and prioritize interventions for water quality improvement with the aid of computer simulation models. The methodology can be used to elaborate and compare future socio-economic development scenarios to select the best interventions based on three criteria: (1) ideas of experts and stakeholders about the importance of scenarios, (2) impacts of each scenario on surface water quality in watershed, and (3) benefit–cost analysis for each scenario. A score is computed for each scenario based on a weighted sum technique which enables to take into consideration different level of importance for the three criteria. The methodology is applied to Cau River basin in Vietnam, with the aid of a computer tool, to assess interventions for river water quality improvement within the context of population growth and urbanization. The results show that fast future population growth in upstream has significant impacts. In 2020, an increase of 116 % of the population in Bac Kan town can lead to an increase of 120 and 135 % in BOD5 and NH4 + median concentrations, respectively, with the implementation of a treatment plant for 10,000 people in Bac Kan town. Therefore, the increase of the domestic wastewater treatment plant’s capacity in Bac Kan town, at least twice as the projection of local government, is necessary. These results will help decision makers to select the best interventions for Cau River basin management.  相似文献   
146.
Accurate emission inventory (EI) is the foremost requirement for air quality management. Specifically, air quality modeling requires EI with adequate spatial and temporal distributions. The development of such EI is always challenging, especially for sporadic emission sources such as biomass open burning. The country of Thailand produces a large amount of various crops annually, of which rough (unmilled) rice alone accounted for over 30 million tonnes in 2007. The crop residues are normally burned in the field that generates large emissions of air pollutants and climate forcers. We present here an attempt at a multipollutant EI for crop residue field burning in Thailand. Available country-specific and regional primary data were thoroughly scrutinized to select the most realistic values for the best, low and high emission estimates. In the base year of 2007, the best emission estimates in Gigagrams were as follows: particulate matter as PM2.5, 128; particulate matter as PM10, 143; sulfur dioxide (SO2), 4; carbon dioxide (CO2), 21,400; carbon monoxide (CO), 1,453; oxides of nitrogen (NOx), 42; ammonia (NH3), 59; methane (CH4), 132; non-methane volatile organic compounds (NMVOC), 108; elemental carbon (EC), 10; and organic carbon (OC), 54. Rice straw burning was by far the largest contributor to the total emissions, especially during the dry season and in the central part of the country. Only a limited number of EIs for crop residue open burning were reported for Thailand but with significant discrepancies. Our best estimates were comparable but generally higher than other studies. Analysis for emission uncertainty, taking into account possible variations in activity data and emission factors, shows considerable gaps between low and high estimates. The difference between the low and high EI estimates for particulate matter and for particulate EC and OC varied between −80% and +80% while those for CO2 and CO varied between −60% and +230%. Further, the crop production data of Thailand were used as a proxy to disaggregate the emissions to obtain spatial (76 provinces) and temporal (monthly) distribution. The provincial emissions were also disaggregated on a 0.1° × 0.1° grid net and to hourly profiles that can be directly used for dispersion modeling.  相似文献   
147.
Journal of Material Cycles and Waste Management - This study was designed to investigate the hardened performance of the paste specimens produced using a composite binder with high volumes of mine...  相似文献   
148.
Environmental Chemistry Letters - Pollution and diseases such as the coronavirus pandemic (COVID-19) are major issues that may be solved partly by nanotechnology. Here we review the synthesis of...  相似文献   
149.
Environmental Science and Pollution Research - Vietnam is highly vulnerable to climate change-related extreme weather events such as heatwaves. This study assesses the association between heatwaves...  相似文献   
150.
Emission from field burning of crop residue, a common practice in many parts of the world today, has potential effects on air quality, atmosphere and climate. This study provides a comprehensive size and compositional characterization of particulate matter (PM) emission from rice straw (RS) burning using both in situ experiments (11 spread field burning) and laboratory hood experiments (3 pile and 6 spread burning) that were conducted during 2003-2006 in Thailand. The carbon balance and emission ratio method was used to determine PM emission factors (EF) in the field experiments. The obtained EFs varied from field to hood experiments reflecting multiple factors affecting combustion and emission. In the hood experiments, EFs were found to be depending on the burning types (spread or pile), moisture content and the combustion efficiency. In addition, in the field experiments, burning rate and EF were also influenced by weather conditions, i.e. wind. Hood pile burning produced significantly higher EF (20±8 g kg(-1) RS) than hood spread burning (4.7±2.2 g kg(-1) RS). The majority of PM emitted from the field burning was PM(2.5) with EF of 5.1±0.7 g m(-2) or 8.3±2.7 g kg(-1) RS burned. The coarse PM fraction (PM(10-2.5)) was mainly generated by fire attention activities and was relatively small, hence the resulting EF of PM(10) (9.4±3.5 g kg(-1) RS) was not significantly higher than PM(2.5). PM size distribution was measured across 8 size ranges (from <0.4 μm to >9.0 μm). The largest fractions of PM, EC and OC were associated with PM(1.1). The most significant components in PM(2.5) and PM(10) include OC, water soluble ions and levoglucosan. Relative abundance of some methoxyphenols (e.g., acetylsyringone), PAHs (e.g., fluoranthene and pyrene), organochlorine pesticides and PCBs may also serve as additional signatures for the PM emission. Presence of these toxic compounds in PM of burning smoke increases the potential toxic effects of the emission. For illustration, an estimation of the annual RS field burning in Thailand was made using the obtained in situ field burning EFs and preliminary burning activity data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号