首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   2篇
安全科学   1篇
环保管理   9篇
综合类   73篇
基础理论   39篇
环境理论   1篇
污染及防治   30篇
评价与监测   5篇
社会与环境   5篇
  2023年   2篇
  2017年   4篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   12篇
  2007年   5篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2002年   4篇
  2001年   5篇
  1999年   5篇
  1996年   2篇
  1995年   3篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1981年   2篇
  1980年   3篇
  1966年   3篇
  1965年   2篇
  1963年   2篇
  1962年   3篇
  1960年   2篇
  1959年   2篇
  1958年   4篇
  1957年   3篇
  1956年   1篇
  1954年   5篇
  1953年   1篇
  1952年   1篇
  1951年   2篇
  1944年   1篇
  1943年   1篇
  1937年   1篇
  1936年   2篇
  1935年   2篇
  1934年   2篇
  1930年   1篇
  1924年   1篇
  1920年   2篇
  1918年   1篇
  1917年   1篇
  1916年   2篇
  1915年   3篇
排序方式: 共有163条查询结果,搜索用时 93 毫秒
101.
A time dependent, vertical plane mathematical model of nitrate distribution in Onslow Bay, North Carolina, is developed using similarity theory and conventional numerical techniques. Inputs of nitrate into Onslow Bay are the result of Gulf Stream intrusions (Atkinson et al., 1980) and this forcing is included as a boundary condition for this system. Advective and diffusive processes provide the mechanisms for transport of nitrate in Onslow Bay. The time dependence of the resulting nitrate fields is determined by the rate of phytoplankton removal of nitrate.Nondimensional numbers, arising from model formulation, indicate the relative importance of various processes included in the model. Two nondimensional numbers, H and P, and the nondimensional ratio, P/H, indicate interactions of physical processes. Importance of the biological terms is determined by a third nondimensional number, A. Model results are compared to nitrate data collected in Onslow Bay, North Carolina during an intrusion.  相似文献   
102.
103.
During the last decades, high population growth and export-oriented economics in Vietnam have led to a tremendous intensification of rice production, which in turn has significantly increased the amount of pesticides applied in rice cropping systems. Since pesticides are toxic by design, there is a natural concern on the impact of their presence in the environment on human health and environmental quality. The present study was designed to examine the water regime and fate of pesticides (fenitrothion, dimethoate) during two consecutive rice crop seasons in combined paddy rice-fish pond farming systems in northern Vietnam. Major results revealed that 5 and 41% (dimethoate), and 1 and 17% (fenitrothion) of the applied mass of pesticides were lost from the paddy field to the adjacent fish pond during spring and summer crop seasons, respectively. The decrease of pesticide concentration in paddy surface water was very rapid with dissipation half-life values of 0.3 to 0.8 and 0.2 d for dimethoate and fenitrothion, respectively. Key factors controlling the transport of pesticides were water solubility and paddy water management parameters, such as hydraulic residence time and water holding period. Risk assessment indicates that the exposure to toxic levels of pesticides for aquaculture (, ) is significant, at least shortly after pesticide application.  相似文献   
104.
This study was performed to identify the transport pathways of pesticides from a sloped litchi ( Sonn.) orchard to a nearby stream based on a three-component hydrograph separation (baseflow, interflow, surface runoff). Dissolved silica and electrical conductivity were chosen as representative tracers. During the study period (30 d), 0.4 and 0.01% of the applied mass of atrazine and chlorpyrifos, respectively, were detected in the stream after 151 mm of rainfall. Baseflow (80-96%) was the dominant hydrological flow component, followed by interflow (3-18%) and surface runoff (1-7%). Despite its small contribution to total discharge, surface runoff was the dominant atrazine transport pathway during the first days after application because pesticide concentrations in the surface runoff flow component declined quickly within several days. Preferential transport with interflow became the dominant pathway of atrazine. Because chlorpyrifos was detected in the stream water only twice, it was not included in the hydrograph separation. A feature of the surface runoff pathway was the coincidence of pesticide and discharge peaks. In contrast, peak concentrations of pesticides transported by interflow occurred during the hydrograph recession phases. Stormflow generation and pesticide transport depended on antecedent rainfall. The combination of high-resolution pesticide concentration measurements with a three-component hydrograph separation has been shown to be a suitable method to identify pesticide transport pathways under tropical conditions.  相似文献   
105.
Diclofenac, as one of the most popular antiphlogistics, is produced in great quantities. Nowadays this drug is ubiquitously present in the aquatic environment due to its resistance to biodegradation. Degradation by ultrasonic irradiation is a possibility to eliminate diclofenac from water without the addition of chemicals. The sonolysis of diclofenac in water was investigated at ultrasound frequencies of 24 kHz, 216 kHz, 617 kHz, and 850 kHz and in the presence of various catalysts (TiO2, SiO2, SnO2, and titanosilicate). The degradation of diclofenac by sonolysis of an aqueous solution at 617 kHz followed first-order kinetics. Catalysts, especially TiO2 increased the rate of degradation. Within 30 min of irradiation, the relative concentration of diclofenac decreased from 100% to 16%. By HPLC and GC-MS methods, chlorinated anilines, phenols and carboxylic acid derivatives were detected as a result of the sonolysis. About 35% of organic chlorine was transformed into inorganic chloride. Most of the identified degradation products in the sonolysis of diclofenac were the same compounds that were detected during photo-oxidation experiments with this anti-inflammatory drug.  相似文献   
106.
Here we show, for the first time, evidence of the primary molecular structures in humic substances (HS), the most abundant naturally occurring organic molecules on Earth, and their associations as mixtures in terrestrial systems. Multi-dimensional nuclear magnetic resonance (NMR) experiments show us that the major molecular structural components in the mixtures operationally defined as HS are aliphatic acids, ethers, esters and alcohols; aromatic lignin derived fragments; polysaccharides and polypeptides. By means of diffusion ordered spectroscopy, distinct diffusion coefficients consistent with relatively low molecular weight molecules were observed for all the components in the mixtures, and saccharides were the largest single class of component present. Liquid chromatography NMR confirmed that HS components can be easily separated and nuclear Overhauser effect (NOE) enhancements support the finding that the components are of relatively low molecular weight <~2,000 Da. The widely recognized properties of HS, i.e., characteristics indicative of crosslinked, macromolecular networks, can now be explained as aggregation of mixtures, most likely instigated by complexation with metal cations.  相似文献   
107.
While held to be a means for climate change adaptation and mitigation, nature-based solutions (NbS) themselves are vulnerable to climate change. To find ways of compensating for this vulnerability we combine a focused literature review on how information technology has been used to strengthen positive social–ecological–technological feedback, with the development of a prototype decision-support tool. Guided by the literature review, the tool integrates recent advances in using globally available remote sensing data to elicit information on functional diversity and ecosystem service provisioning with information on human service demand and population vulnerability. When combined, these variables can inform climate change adaptation strategies grounded in local social–ecological realities. This type of integrated monitoring and packaging information to be actionable have potential to support NbS management and local knowledge building for context-tailored solutions to societal challenges in urban environments.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-022-01801-4.  相似文献   
108.
Vibrio cholerae   or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.  相似文献   
109.
A hydrodynamic-oyster population dynamics model was developed to assess the effect of a change in ship channel configuration under different freshwater inflow regimes and different future hydrologies on oyster (Crassostrea virginica) populations in Galveston Bay, Texas. The population dynamics model includes the effects of environmental conditions, predators, and the oyster parasite Perkinsus marinus on oyster populations. The hydrodynamic model includes the effects of wind stress, river runoff, tides, and oceanic exchange on the circulation of the Bay. Simulations were run for low, mean, and high freshwater inflow conditions under the present (1993) hydrology and predicted hydrologies for 2024 and 2049 that include anticipated water diversion projects to satisfy the freshwater demands of population growth in metropolitan Houston, Texas. Simulation results show that oyster biomass was predicted to increase after enlargement of the ship channel. Oyster biomass is expected to increase on about 53% of total reef acreage when averaged over a 50-yr time span. Oyster reef acreage characterized by increased biomass after channel enlargement increases moderately under the present hydrology and the 2049 hydrology, but decreases slightly in 2024. Lower biomass in 2024 is due to reduced freshwater inflow and increased saltwater intrusion that pushes the optimal areas for oyster growth somewhat farther upbay than in 2049. Declines in oyster biomass, noted in most simulations in downbay reaches, were more than balanced by increased oyster biomass upbay. The differential between upbay and downbay reefs can be explained by an increase in mortality from Perkinsus marinus downbay and saltwater intrusion upbay that expands the area characterized by moderate salinities. The 20th century history of Galveston Bay is one of expansion of isohaline structure and increased oyster production as a result of anthropogenic modification of bay physiography. The salinity gradient of the 1990s, however, is not in equilibrium with the distribution of hard substrate required for oyster growth, that reflects an earlier equilibrium with the pre-1900s hydrodynamics. Increased saltwater intrusion is normally disadvantageous to oyster populations; but, in this case, channel enlargement further expands the salinity gradient upbay and outward (east and west) from the channel. As a result, in most years, oyster biomass is increased because moderate salinities cover more of the pre-1900s reef tracts where hard substrate is plentiful.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号