首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   1篇
  国内免费   1篇
安全科学   1篇
环保管理   23篇
综合类   7篇
基础理论   39篇
污染及防治   19篇
评价与监测   3篇
社会与环境   5篇
  2022年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2001年   14篇
  2000年   7篇
  1999年   3篇
  1997年   1篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1989年   2篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
91.
92.
93.
94.
ABSTRACT: The design of monitoring programs often serves as one of the major sources of error or uncertainty in water quality data. Properly designed programs should minimize uncertainty or at least provide a means by which variability can be partitioned into recognizable components. While the design of sampling programs has received recent attention, commonly employed strategies for limnological sampling of lakes may not be completely appropriate for many reservoirs. Based on NES data, reservoirs are generally larger, deeper, and morphologically more complex than natural lakes. Reservoirs also receive a majority of their inflow from a single tributary located a considerable distance from the point of outflow. The result is the establishment of marked physical, biological, and chemical gradients from headwater to dam. The existence of horizontal as well as vertical gradients, and their importance in water quality sampling design were the subject of intensive transect sampling efforts at DeGray Lake, a U.S. Army Corps of Engineers reservoir in southern Arkansas. Data collected were used to partition Variance, identify areas of similarity, and demonstrate how an equitable sampling program might be designed.  相似文献   
95.
A series of investigations were conducted using sequencing batch biofilm reactor(SBBR) to explore the influence of C:N:P ratio on biological dephosphatation including the denitrifying dephosphatation and the denitrification process.Biomass in the reactor occurred mainly in the form of a biofilm attached to completely submerged disks.Acetic acid was used as the source of organic carbon.C:N:P ratios have had a significant effect on the profiles of phosphate release and phosphate uptake and nitrogen removal.The highest rates of phosphate release and phosphate uptake were recorded at the C:N:P ratio of 140:70:7.The C:N ratio of 2.5:1 ensured complete denitrification.The highest rate of denitrification was achieved at the C:N:P ratio of 140:35:7.The increase of nitrogen load caused an increase in phosphates removal until a ratio C:N:P of 140:140:7.Bacteria of the biofilm exposed to alternate conditions of mixing and aeration exhibited enhanced intracellular accumulation of polyphosphates.Also,the structure of the biofilm encouraged anaerobic–aerobic as well as anoxic–anaerobic and absolutely anaerobic conditions in a SBBR.These heterogeneous conditions in the presence of nitrates may be a significant factor determining the promotion of denitrifying polyphosphate accumulating organism(DNPAO) development.  相似文献   
96.
Until recently, Intergovernmental Panel on Climate Change (IPCC) emission factor methodology, based on simple empirical relationships, has been used to estimate carbon (C) and nitrogen (N) fluxes for regional and national inventories. However, the 2005 USEPA greenhouse gas inventory includes estimates of N2O emissions from cultivated soils derived from simulations using DAYCENT, a process-based biogeochemical model. DAYCENT simulated major U.S. crops at county-level resolution and IPCC emission factor methodology was used to estimate emissions for the approximately 14% of cropped land not simulated by DAYCENT. The methodology used to combine DAYCENT simulations and IPCC methodology to estimate direct and indirect N2O emissions is described in detail. Nitrous oxide emissions from simulations of presettlement native vegetation were subtracted from cropped soil N2O to isolate anthropogenic emissions. Meteorological data required to drive DAYCENT were acquired from DAYMET, an algorithm that uses weather station data and accounts for topography to predict daily temperature and precipitation at 1-km2 resolution. Soils data were acquired from the State Soil Geographic Database (STATSGO). Weather data and dominant soil texture class that lie closest to the geographical center of the largest cluster of cropped land in each county were used to drive DAYCENT. Land management information was implemented at the agricultural-economic region level, as defined by the Agricultural Sector Model. Maps of model-simulated county-level crop yields were compared with yields estimated by the USDA for quality control. Combining results from DAYCENT simulations of major crops and IPCC methodology for remaining cropland yielded estimates of approximately 109 and approximately 70 Tg CO2 equivalents for direct and indirect, respectively, mean annual anthropogenic N2O emissions for 1990-2003.  相似文献   
97.
Human communities inhabiting remote and geomorphically fragile high-altitude regions are particularly vulnerable to climate change-related glacial hazards and hydrometeorological extremes. This study presents a strategy for enhancing adaptation and resilience of communities living immediately downstream of two potentially hazardous glacial lakes in the Upper Chenab Basin of the Western Himalaya in India. It uses an interdisciplinary investigative framework, involving ground surveys, participatory mapping, comparison of local perceptions of environmental change and hazards with scientific data, identification of assets and livelihood resources at risk, assessment of existing community-level adaptive capacity and resilience and a brief review of governance issues. In addition to recommending specific actions for securing lives and livelihoods in the study area, the study demonstrates the crucial role of regional ground-level, community-centric assessments in evolving an integrated approach to disaster risk reduction and climate change adaptation for high-altitude environments, particularly in the developing world.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号