Environmental Science and Pollution Research - Single-use plastic waste is gradually considered a potential material for circular economy. Ion exchange resin obtained from polystyrene waste by... 相似文献
The results of an inter-laboratory comparison exercise to determine cytostatic anticancer drug residues in surface water, hospital wastewater and wastewater treatment plant effluent are reported. To obtain a critical number of participants, an invitation was sent out to potential laboratories identified to have the necessary knowledge and instrumentation. Nine laboratories worldwide confirmed their participation in the exercise. The compounds selected (based on the extent of use and laboratories capabilities) included cyclophosphamide, ifosfamide, 5-fluorouracil, gemcitabine, etoposide, methotrexate and cisplatinum. Samples of spiked waste (hospital and wastewater treatment plant effluent) and surface water, and additional non-spiked hospital wastewater, were prepared by the organising laboratory (Jo?ef Stefan Institute) and sent out to each participant partner for analysis. All analytical methods included solid phase extraction (SPE) and the use of surrogate/internal standards for quantification. Chemical analysis was performed using either liquid or gas chromatography mass (MS) or tandem mass (MS/MS) spectrometry. Cisplatinum was determined using inductively coupled plasma mass spectrometry (ICP-MS). A required minimum contribution of five laboratories meant that only cyclophosphamide, ifosfamide, methotrexate and etoposide could be included in the statistical evaluation. z-score and Q test revealed 3 and 4 outliers using classical and robust approach, respectively. The smallest absolute differences between the spiked values and the measured values were observed in the surface water matrix. The highest within-laboratory repeatability was observed for methotrexate in all three matrices (CV?≤?12 %). Overall, inter-laboratory reproducibility was poor for all compounds and matrices (CV 27–143 %) with the only exception being methotrexate measured in the spiked hospital wastewater (CV?=?8 %). Random and total errors were identified by means of Youden plots. 相似文献
Predicting the soil-to-plant transfer of metals in the context of global warming has become a major issue for food safety. It requires a better understanding of how the temperature alters the bioavailability of metals in cultivated soils. This study focuses on one agricultural soil contaminated by Cd, Zn and Pb. DGT measurements were performed at 10, 20 and 30 °C to assess how the bioavailability of metals was affected by a rise in soil temperature. A lettuce crop was cultivated in the same conditions to determine if the soil-to-plant transfer of metals increased with a rise in soil temperature. A gradual decline in Cd and Zn bioavailability was observed from 10 to 30 °C, which was attributed to more intense complexation of metals in the pore water at higher temperatures. Together with its aromaticity, the affinity of dissolved organic matter (DOM) for metals was indeed suspected to increase with soil temperature. One main output of the present work is a model which satisfactorily explains the thermal-induced changes in the characteristics of DOM reported in Cornu et al. (Geoderma 162:65–70, 2011) by assuming that the mineralization of initial aliphatic compounds followed a first-order reaction, increased with soil temperature according to the Arrhenius law, and due to a priming effect, led to the appearance of aromatic molecules. The soil-to-plant transfer of Cd and Zn was promoted at higher soil temperatures despite a parallel decrease in Cd and Zn bioavailability. This suggests that plant processes affect the soil-to-plant transfer of Cd and Zn the most when the soil temperature rises. 相似文献
The free living nematode Caenorhabditis elegans is a proven model organism for lipid metabolism research. Total lipids of C. elegans were extracted using chloroform and methanol in 2:1 ratio (v/v). Fatty acids composition of the extracted total lipids was converted to their corresponding fatty acids methyl esters (FAMEs) and analyzed by gas chromatography/accurate mass quadrupole time of flight mass spectrometry using both electron ionization and chemical ionization techniques. Twenty-eight fatty acids consisting of 12 to 22 carbon atoms were identified, 65% of them were unsaturated. Fatty acids containing 12 to17 carbons were mostly saturated with stearic acid (18:0) as the major constituent. Several branched-chain fatty acids were identified. Methyl-14-methylhexadecanoate (iso- 17:0) was the major identified branched fatty acid. This is the first report to detect the intact molecular parent ions of the identified fatty acids in C. elegans using chemical ionization compared to electron ionization which produced fragmentations of the FAMEs. 相似文献
Environment, Development and Sustainability - The recent growth of agriculture, industry and urban areas in Vietnam requires a large amount of water consumption as a production factor. This paper... 相似文献
In this study, different pretreatment strategies of sugarcane bagasse prior to citric acid modification were investigated in terms of Pb2+ adsorption capacity. Pretreatment strategies included the use of NaOH, HCl, and C2H5OH in various concentrations. In order to fundamentally understand how these pretreatment methods affect the modification of sugarcane bagasse by citric acid as well as the Pb2+ adsorption capacity of sugarcane bagasse, three main components of sugarcane bagasse namely cellulose, hemicellulose, and lignin were isolated and esterified by citric acid under the same conditions. ATR-FTIR, XPS, SEM, and an analysis of the number of carboxylic acid groups were used to investigate the physicochemical and chemical properties of the materials. These three components were proved to participate in adsorption and induce the esterification with citric acid. Hence, pretreatment with ethanol and 0.01 M NaOH which could retain cellulose, hemicellulose, and lignin in sugarcane bagasse achieved a high Pb2+ adsorption capacity, i.e., 122.4 and 97 mg/g after the esterification with citric acid. In contrast, pretreatment with 0.5 M NaOH and 0.1 M HCl removed lignin and hemicellulose, leading to the lowest value of approximately 45 mg/g for citric acid esterified-pretreated sugarcane bagasse. XPS analysis and number of carboxylic group measurement confirmed the esterification between bagasse and citric acid. To understand the adsorption mechanism of adsorbent, two kinetic models including pseudo-first-order model and pseudo-second-order model were applied. The experimental data were well described by the pseudo-second-order model. The adsorption isotherm data were fitted Langmuir and Freundlich.
Recovering and analysing fetal erythrocytes from maternal blood is being pursued for non-invasive prenatal genetic diagnosis. We report the observation of 46, XY/47, XXY mosaicism in fetal cells from a woman whose first-trimester chorionic villus sampling (CVS) initially showed only 46, XY. Only after exhaustive (500 cells) analysis were four XXY cells found in cultured villi. 相似文献
Agriculture, Forestry and Other Land Use (AFOLU) sectors account for 53 % of the domestic greenhouse gas emissions (GHG) in Vietnam in 2000. However, due to political focus on adaptation, Vietnamese government has not formulated particular policy on mitigation in the sectors. This study aims to identify and assess mitigation potential in AFOLU sectors in Vietnam up to 2030 using AFOLU Bottom-up model. Therefore, the results can help government towards building mitigation strategies in the country. The methodology involves: (1) development of future assumptions of crops harvested areas, livestock population and area of land use and land use change and (2) identification of mitigation countermeasures with high potential and assessment of their cost-effectiveness. In 2030, 11 MtCO2eq/year of emission can be reduced by no-regret countermeasures which take zero or negative cost. In the case of full application of countermeasures, 48 MtCO2eq/year can be reduced compared to the baseline emission level. Mitigation countermeasures, which have great contribution for GHG reduction in Vietnam, are midseason drainage in rice paddy (7 MtCO2eq/year), off-season incorporation of rice straw (3 MtCO2eq/year) and conservation of existing protection forests (17 MtCO2eq/year). Based on our findings, a package of mitigation countermeasures at 10 USD/tCO2eq is expected to have the most economic efficiency and high mitigation for GHG mitigation in AFOLU sectors in Vietnam. 相似文献
Rapid changes in upland farming systems in Southeast Asia generated predominantly by increased population pressure and ‘market forces’ have resulted in widespread land degradation that has been well documented at the plot scale. Yet, the links between agricultural activities in the uplands and downstream off-site effects remain largely unknown because of the difficulties in transferring results from plots to a larger scale. Many authors have thus pointed out the need for long-term catchment studies. The objective of this paper is to summarize the results obtained by the Management of Soil Erosion Consortium (MSEC) over the last 5 years from 27 catchments in five countries (Indonesia, Laos, Philippines, Thailand, and Vietnam). The purpose of the study was to assess the impacts of cultivation practices on annual runoff and erosion rates. Initial surveys in each catchment included topography, soils and land use. Monitoring included climatic, hydrologic and erosion (total sediment yield including bed load and suspended sediment load) data, land use and crop yields, and farmers’ income. In addition, new land management options were introduced through consultations with farmers and evaluated in terms of runoff and erosion. These included tree plantations, fruit trees, improved fallow with legumes, maize intercropped with legumes, planted fodder, native grass strips and agro-ecological practices (direct sowing and mulch-based conservation agriculture). Regressions analyses showed that runoff during the rainy season, and normalized runoff flow coefficient based on erosive rainfall during the rainy season (rainfall with intensity exceeding 25 mm h−1) increase with the percentage of the catchment covered by maize. Both variables decrease with increasing soil depth, standard deviation of catchment slope (that reflects terrain roughness), and the percentages of the catchment covered by fallow (regular and improved), tree plantations and planted fodder. The best predictors of sediment yield were the surface percentages of maize, Job's tears, cassava and footpaths. The main conclusions generated from this study were: (i) soil erosion is predominantly influenced by land use rather than environmental characteristics not only at the plot scale but also at the catchment scale; (ii) slash-and-burn shifting cultivation with sufficiently long rotations (1 year of cultivation, 8 years of fallow) is too often unjustly blamed for degradation; (iii) in its place, continuous cropping of maize and cassava promotes high rates of soil erosion at the catchment scale; (iv) conservation technologies are efficient in reducing runoff and total sediment yield at the catchment scale; (v) the adoption of improved soil management technologies by upland farmers is not a function of the degree of intensification of their farming system and/or of their incomes. The results suggest that if expansion of maize and cassava into already degraded upland systems were to occur due to increased demand for biofuels, there is a risk of higher runoff and sediment generation. A failure to adopt appropriate land use management strategies will result in further rapid resource degradation with negative impacts to downstream communities. 相似文献