首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   13篇
  国内免费   3篇
安全科学   17篇
废物处理   14篇
环保管理   75篇
综合类   15篇
基础理论   82篇
污染及防治   69篇
评价与监测   26篇
社会与环境   6篇
灾害及防治   2篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2019年   3篇
  2018年   10篇
  2017年   8篇
  2016年   15篇
  2015年   7篇
  2014年   9篇
  2013年   20篇
  2012年   13篇
  2011年   23篇
  2010年   13篇
  2009年   13篇
  2008年   19篇
  2007年   21篇
  2006年   25篇
  2005年   13篇
  2004年   14篇
  2003年   13篇
  2002年   13篇
  2001年   1篇
  2000年   6篇
  1999年   2篇
  1998年   1篇
  1997年   5篇
  1996年   2篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1982年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有306条查询结果,搜索用时 15 毫秒
301.
The influence of specific stressors, such as nutrient enrichment and physical habitat degradation, on biotic integrity requires further attention in Midwestern streams. We sampled 53 streams throughout Illinois and examined relationships between macroinvertebrate community structure and numerous physicochemical parameters. Streams were clustered into four major groups based on taxa dissimilarity. Habitat quality and dissolved nutrients were responsible for separating the major groups in a nonmetric multidimensional scaling ordination. Furthermore, the alignment of environmental factors in the ordination suggested there was a habitat quality-nutrient concentration gradient such that streams with high-quality habitats usually had low concentrations of nutrients. Discrimination by community measures further validated the major stream groups and indicated that forested streams had generally higher biological integrity than agricultural streams, which in turn had greater integrity than urban streams. Our results demonstrate that physical habitat degradation and nutrient pollution are important and often confounded determinants of biotic integrity in Illinois streams. In addition, we suggest that management of Midwestern streams could benefit from further implementation of multivariate data exploration and stream classification techniques.  相似文献   
302.
The effect of two major hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) metabolites, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), on cricket (Acheta domesticus) survival and reproduction was studied. RDX metabolites did not have adverse effects on cricket survival, growth, and egg production. However, MNX and TNX did affect egg hatching. MNX and TNX were more toxic in spiked-sand than in topical tests. TNX was more toxic to egg than MNX. Developmental stage and exposure time affected hatching. After 30 days exposure to MNX or TNX, the EC20, EC50, and EC95 were 47, 128, and 247 microg/g for TNX, and 65, 140, and 253 microg/g for MNX in topical tests. The ECs for 20, 50, and 95 were 21, 52, and 99 microg/g for MNX, and 12, 48, and 97 microg/g for TNX in sand. No gross abnormalities in cricket nypmhs were observed in all experiments indicating that neither TNX or MNX is teratogenic in this assay.  相似文献   
303.
The purpose of this study was to investigate the uptake and elimination of perchlorate in eastern mosquitofish (Gambusia holbrooki). Fish were exposed to 0.1-1000 mg/l sodium perchlorate for 12h, 1, 2, 5, 10, and 30 days, and perchlorate was determined in whole body extracts. Perchlorate was not detected in mosquitofish exposed to the low concentrations of perchlorate (0, 0.1, and 1mg/l sodium perchlorate), regardless of the exposure time, whereas it was detected when fish were exposed to 10, 100, and 1000 mg/l. The tissue concentrations were approximately 10 times less than that in the water. There was no difference in the uptake of perchlorate depending upon the exposure time, however, a difference in perchlorate uptake depending upon the concentration of the exposure dose (P<0.001) was observed. Uptake (K(u)) and elimination (K(e)) rate constants were 0.09 l/mg day and 0.70 day(-1), respectively. The half-life (T1/2) of perchlorate was 0.99 day. Thus, it appears that perchlorate is rapidly taken up and eliminated in eastern mosquitofish. These results are critical and may be used to develop models of fate, effects, and transport of perchlorate in natural systems, as well as to assess ecological risk in affected ecosystems.  相似文献   
304.
Toxicity of hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) to earthworm was evaluated. Both MNX and TNX had lethal and sublethal effects on earthworms. Exposure to MNX- or TNX-contaminated soil caused a significant concentration-dependent decrease in earthworm survival and growth. The lowest observed lethal concentration (LOLC) for both MNX and TNX was 100 and 200 mgkg(-1) soil dry weight in the sandy loam soil and in the silt loam soil, respectively. No earthworms survived for 14 days in MNX- or TNX-spiked soil at 500 mgkg(-1) soil dry weight. After 7 days exposure, the lowest observed effect concentration (LOEC) for earthworm growth was 50 mgkg(-1) soil dry weight for TNX and 100 mgkg(-1) soil dry weight for MNX in both soil types. The LC20 and LC50 for MNX in sandy loam soil were 114 and 262 mgkg(-1) and for TNX, they were 114 and 254 mgkg(-1) soil dry weight, respectively. The corresponding values for MNX and TNX in silt loam soil were 234 and 390 mgkg(-1) soil dry weight, respectively, and 200 and 362 mgkg(-1) soil dry weight, respectively. After 35 days exposure, earthworm growth was reduced 8-39% by TNX in sandy loam soil, whereas TNX only inhibited earthworm growth 5-18% at the same concentration range in silt loam soil. LC20 and LC50 for TNX were slightly lower than for MNX; this indicates that TNX was more toxic than MNX. No significant morphological or developmental abnormalities were observed in earthworms surviving exposure.  相似文献   
305.
In toxicokinetics studies, interactions between chemicals in mixtures has been largely neglected. This study examines a mixture of perchlorate and arsenate because (1) they have the potential to co-occur in contaminated aquatic habitats, and (2) a previous study by the authors found possible toxicological interactive effects. In the present study, zebrafish (Danio rerio) were exposed to two concentrations of sodium perchlorate (10 and 100 mg l(-1)), sodium arsenate (1 and 10 mg l(-1)), and the mixture-sodium perchlorate+sodium arsenate (10+1 mg l(-1) and 100+10 mg l(-1) Na(2)HAsO(4)-high mixture) for 90 d. Their uptake and accumulation by zebrafish was evaluated at 10, 30, 60, and 90 d. In addition, depuration was examined at 1, 3, and 5d after cessation of the exposure. The uptake of either chemical was concentration-dependent, with significantly higher uptake at high concentrations at either exposure interval. In contrast, there was no significant difference in whole body residue between single chemicals and the corresponding mixture except for 100 mg l(-1) sodium arsenate at 90 d. However, there was increasing accumulation over time at the high concentration of either chemical alone and their mixture, and this increasing trend was more pronounced in the single chemical exposures than in the mixture. At the concentrations tested in the current study, both chemicals reduced the uptake but enhanced the depuration of the other chemical from the zebrafish. This study represents the first examination of the interaction of two anions-perchlorate and arsenate with respect to toxicokinetics.  相似文献   
306.
Perchlorate, a known thyroid endocrine disruptor, contaminates surface waters near military instillations where solid fuel rocket motors are manufactured or assembled. To assess potential perchlorate exposure to fish and the human population which may feed on them, fish were collected around the Naval Weapons Industrial Reserve Plant in McLennan County, TX, and analyzed for the presence of the perchlorate anion. The sampling sites included Lake Waco and Belton Lake, and several streams and rivers within their watersheds. The general tendency was that perchlorate was only found in a few species sampled, and perchlorate was not detected in every individual within these species. When detected in the fish, perchlorate tissue concentrations were greater than that in the water. This may be due to highly variable perchlorate concentrations in the water coupled with individual-level variation in elimination from the body, or to routes of exposure other than water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号