首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   632篇
  免费   8篇
  国内免费   2篇
安全科学   23篇
废物处理   18篇
环保管理   85篇
综合类   93篇
基础理论   137篇
环境理论   2篇
污染及防治   193篇
评价与监测   39篇
社会与环境   46篇
灾害及防治   6篇
  2023年   3篇
  2022年   8篇
  2021年   14篇
  2020年   4篇
  2019年   8篇
  2018年   21篇
  2017年   17篇
  2016年   18篇
  2015年   27篇
  2014年   28篇
  2013年   51篇
  2012年   26篇
  2011年   36篇
  2010年   43篇
  2009年   38篇
  2008年   30篇
  2007年   36篇
  2006年   31篇
  2005年   20篇
  2004年   28篇
  2003年   21篇
  2002年   26篇
  2001年   10篇
  2000年   17篇
  1999年   16篇
  1998年   6篇
  1997年   7篇
  1996年   4篇
  1995年   7篇
  1994年   9篇
  1993年   3篇
  1991年   2篇
  1989年   2篇
  1984年   2篇
  1980年   3篇
  1976年   1篇
  1972年   1篇
  1971年   2篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1963年   1篇
  1962年   1篇
  1961年   1篇
  1958年   1篇
  1955年   1篇
  1949年   1篇
  1948年   1篇
  1937年   1篇
  1920年   1篇
排序方式: 共有642条查询结果,搜索用时 842 毫秒
181.
This research analyses the application of spatially explicit sensitivity and uncertainty analysis for GIS (Geographic Information System) multicriteria decision analysis (MCDA) within a multi-dimensional vulnerability assessment regarding flooding in the Salzach river catchment in Austria. The research methodology is based on a spatially explicit sensitivity and uncertainty analysis of GIS-CDA for an assessment of the social, economic, and environmental dimensions of vulnerability. The main objective of this research is to demonstrate how a unified approach of uncertainty and sensitivity analysis can be applied to minimise the associated uncertainty within each dimension of the vulnerability assessment. The methodology proposed for achieving this objective is composed of four main steps. The first step is computing criteria weights using the analytic hierarchy process (AHP). In the second step, Monte Carlo simulation is applied to calculate the uncertainties associated with AHP weights. In the third step, the global sensitivity analysis (GSA) is employed in the form of a model-independent method of output variance decomposition, in which the variability of the different vulnerability assessments is apportioned to every criterion weight, generating one first-order (S) and one total effect (ST) sensitivity index map per criterion weight. Finally, in the fourth step, an ordered weighted averaging method is applied to model the final vulnerability maps. The results of this research demonstrate the robustness of spatially explicit GSA for minimising the uncertainty associated with GIS-MCDA models. Based on these results, we conclude that applying the variance-based GSA enables assessment of the importance of each input factor for the results of the GIS-MCDA method, both spatially and statistically, thus allowing us to introduce and recommend GIS-based GSA as a useful methodology for minimising the uncertainty of GIS-MCDA.  相似文献   
182.
183.
The distribution of aqueous Tl(I)/Tl(III) as a function of light exposure and solution properties was studied by quantifying the oxidation states after separation with ion chromatography and on-line detection with ICP-MS. Ultraviolet irradiation of aqueous solutions containing 1 microg l(-1) Tl(III) and in equilibrium with the atmosphere increases the reduction rate. In systems with photoreduction of Fe(III)(aq) a quantitative oxidation of Tl(I)(aq) was observed, notably at low pH. The process is reversible, as indicated by formation of Tl(I) when the irradiated systems were kept in the dark. In systems with colloidal silica-stabilised ferrihydrite, UV irradiation also leads to oxidation of Tl(I)(aq), but not quantitatively. It is suggested that adsorption of thallium to the ferrihydrite determines the rate of oxidation. Detectable, but not quantitative, oxidation of Tl(I)(aq) took place when natural water samples with 1 microg l(-1) Tl(I)(aq) were exposed to either sunlight or UV-light. For these samples, the reduction was not quantitative when they were kept in the dark for 24 h. The results suggest that the light dependent iron cycle in fresh water systems strongly influences the redox state of thallium.  相似文献   
184.
Background, aim, and scope  In 1875, the geoscientist Walter Suess introduced several spheres, such as the lithosphere and the atmosphere to promote a comprehensive understanding of the system earth. Since then, this idea became the dominating concept for the understanding of the distribution of chemical elements in the system earth. Meanwhile, due to the importance of human beings on global element fluxes, the term anthroposphere was introduced. Nevertheless, in face of the ongoing urbanization of the earth, this concept is not any more adequate enough to develop a comprehensive understanding of global element fluxes in and between solid, liquid, and gaseous phases. This article discusses a new concept integrating urbanization into the geoscientific concept of spheres. Main features  No geological exogenic force has altered the earth’s surface during the last centuries in such an extent as human activity. Humans have altered the morphology and element balances of the earth by establishing agrosystems first and urban systems later. Currently, urban systems happen to become the main regulators for fluxes of many elements on a global scale due to ongoing industrial and economic development and a growing number of inhabitants. Additionally, urban systems are constantly expanding and cover more and more former natural and agricultural areas. For nature, urban systems are new phenomena, which never existed in previous geological eras. The process of the globe’s urbanization concurrently is active with the global climate change. In fact, urban systems are a major emitter for climate active gases. Thus, beside the global changes in economy and society, urbanization is an important factor within the global change of nature as is already accepted for climate, ecosystems, and biodiversity. Results  Due to the fact that urbanization has become a global process shaping the earth and that the urban systems are globally cross-linked among each other, a new geoscientific sphere has to be introduced: the astysphere. This sphere comprises the parts of the earth influenced by urban systems. Accepting urbanization as global ongoing process forming the astysphere comprehensively copes with the growing importance of urbanization on the creation of present geologic formations. Discussion  Anthropogenic activities occur mainly in rural and urban environments. For long lasting periods of human history, human activities mainly were focused on hunting and agriculture, but since industrialization, urbanized areas became increasingly important for the material and energy fluxes of earth. Thus, it seems appropriate to classify the anthroposphere into an agriculturally and an urban-dominated sphere, which are the agrosphere (Krishna 2003) and the astysphere (introduced by Norra 2007). Conclusions  We have to realize that urban systems are deposits, consumers, and transformers of resources interacting among each other and forming a network around the globe. Since the future of human mankind depends on the sustainable use of available resources, only a global and holistic view of the cross-linked urban systems forming together the astysphere provide the necessary geoscientific background understanding for global urban material and energy fluxes. If we want to ensure worth-living conditions for future generations of mankind, we have to develop global models of the future needs for resources by the global metasystem of urban systems, called astysphere. Perspectives  The final vision for geoscientific research on the astysphere must be to design models describing the global process of urbanization of the earth and the development of the astysphere with respect to fluxes of materials, elements, and energy as well as with respect to the forming of the earth’s face. Besides that, just from the viewpoint of fundamental research, the geoscientific concept of spheres has to be complemented by the astysphere if this concept shall fully represent the system earth.
Stefan NorraEmail:
  相似文献   
185.
A 2-year open-top chamber experiment with field-grown winter wheat (Triticum aestivum L. cv. Astron) was conducted to examine the effects of ozone on plant growth and selected groups of soil mesofauna in the rhizosphere. From May through June in each year, plants were exposed to two levels of O3: non-filtered (NF) ambient air or NF+ 40 ppb O3 (NF+). During O3 exposure, soil sampling was performed at two dates according to different plant growth stages. O3 exposure reduced above- and below-ground plant biomass in the first year, but had little effect in the second year. The individual density of enchytraeids, collembolans and soil mites decreased significantly in the rhizosphere of plants exposed to NF+ in both years. Differences were highest around anthesis, i.e. when plants are physiologically most active. The results suggest that elevated O3 concentrations may influence the dynamic of decomposition processes and the turnover of nutrients.  相似文献   
186.
Genotoxic damage was evaluated in 70 agricultural workers, 25 women and 45 men, exposed to pesticides in Las Grullas, Ahome, Sinaloa, Mexico, with an average of 7 years of exposure. The effect was detected through the sister chromatid exchanges (SCE) in lymphocytes of peripheral blood and micronuclei (MN) and other nuclear anomalies (NA) in buccal exfoliated cells. Also, the influence on cellular proliferation kinetics (CPK) was studied by means of the replication index (RI) and the cytotoxic effect was examined with the mitotic index (MI). The non-exposed group consisted of 70 other persons, 21 women and 47 men from the city of Los Mochis, Sinaloa, Mexico. Significant differences between the exposed and the non-exposed groups were observed in SCE, CPK, MI, MN and NA. Analysis of variance revealed that age, gender, smoking and alcohol consumption did not have a significant effect on genetic damage. However, there was a correlation between exposure time to pesticides and SCE frequency. These results could have been due to the exposure of workers to pesticides containing different chemical compounds. This study afforded valuable data to estimate the possible risk to health associated with pesticide exposure.  相似文献   
187.
The personal assessments of the current and expected future state of the environment by 3232 community respondents in 18 nations were investigated at the local, national, and global spatial levels. These assessments were compared to a ranking of each country's environmental quality by an expert panel. Temporal pessimism (“things will get worse”) was found in the assessments at all three spatial levels. Spatial optimism bias (“things are better here than there”) was found in the assessments of current environmental conditions in 15 of 18 countries, but not in the assessments of the future. All countries except one exhibited temporal pessimism, but significant differences between them were common. Evaluations of current environmental conditions also differed by country. Citizens' assessments of current conditions, and the degree of comparative optimism, were strongly correlated with the expert panel's assessments of national environmental quality. Aside from the value of understanding global trends in environmental assessments, the results have important implications for environmental policy and risk management strategies.  相似文献   
188.
The use of spectroscopic techniques (especially phosphorus-31 nuclear magnetic resonance [(31)P-NMR] and X-ray absorption near edge structure spectroscopy) has recently advanced the analysis of the speciation of P in poultry litter (PL) and greatly enhanced our understanding of changes in P pools in PL that receive alum (aluminum sulfate) to reduce water-soluble P and control ammonia emissions from poultry houses. Questions remain concerning changes of P species during long-term storage, drying, or after application of PL to cropland or for other uses, such as turfgrass. In this study, we investigated a set of six PL samples (of which three were alum-amended and three were unamended) that had been characterized previously. The P speciation was analyzed using solid-state (31)P-NMR spectroscopy, and the mineralogy was analyzed by powder X-ray diffraction (XRD) after storing the samples moist and dried for up to 5 yr under controlled conditions. The magnesium ammonium phosphate mineral struvite was identified in all but one PL samples. Struvite concentrations were generally lower in dried samples (< or = 14%) than in samples stored moist (23 and 26%). The moist samples also had higher concentrations of phosphate bound to aluminum hydroxides. Solid-state NMR spectroscopy was in general more sensitive than XRD in detecting and quantifying P species. Although phosphate associated with calcium and aluminum made up a large proportion of P species, they were not detected by XRD.  相似文献   
189.
The halogenated natural product previously named mixed-halogenated compound 1 (MHC-1) was isolated from the red seaweed Plocamium cartilagineum harvested in Helgoland, Germany. A total of 1.9mg of pure MHC-1 was obtained from 1g air-dried seaweed. The (1)H and (13)C NMR data matched those reported for a natural monoterpene isolated from this species. Thus, the structure of MHC-1 was established to be (1R,2S,4R,5R,1'E)-2-bromo-1-bromomethyl-1,4-dichloro-5-(2'-chloroethenyl)-5-methylcyclohexane. Moreover, the isolated monoterpene proved to be identical with the compound previously detected in marine mammals and fish from different locations. In addition we examined two samples of P. cartilagineum from Ireland and from the Antarctic; however MHC-1 was only present at low levels. Not only the concentrations were lower but also the pattern of polybrominated compounds differed from MHC-1. A calibrated solution of MHC-1 was used to determine correct concentrations from samples where previously only estimates existed relative to the gas chromatography-electron capture detector (GC/ECD) response of trans-chlordane, which underrated the MHC-1 concentrations by more than factor 2. The highest MHC-1 concentration determined to date in marine mammals is 0.14mgkg(-1) blubber. Significantly higher MHC-1 concentrations were determined in farmed fish with up to 2.2mgkg(-1) lipids. The samples with high concentrations of MHC-1 have in common that they were collected in proximity of the natural habitats of P. cartilagineum.  相似文献   
190.

Background, Aim and Scope

Metal ions generally share the ability/tendency of interacting with biological material by forming complexes, except possibly for the heavy alkali metals K, Rb and Cs. This is unrelated to the metals being either essential for sustaining life and its reproduction, apparently insignificant for biology, although perhaps undergoing bioconcentration or even being outright toxic, even at low admission levels. Yet, those different kinds of metal-biomass interactions should in some way depend on properties describing coordination chemistries of these very metals. Nevertheless, both ubiquitously essential metals and others sometimes used in biology should share these properties in numeric terms, since it can be anticipated that they will be distinguished from nonessential and/or toxic ones. These features noted above include bioconcentration, the involvement of metal ions such as Zn, Mg, Cu, Fe, etc. in biocatalysis as crucial components of metalloenzymes and the introduction of a certain set of essential metals common to (almost) all living beings (K, Mg, Mo, Mn, Fe, Cu and Zn), which occurred probably very early in biological evolution by ‘natural selection of the chemical elements’ (more exactly speaking, of the metallomes).

Materials and Methods

The approach is semiempirical and consists of three consecutive steps: 1) derivation of a regression equation which links complex stability data of different complexes containing the same metal ion to electrochemical data pertinent to the (replaced) ligands, thus describing properties of metal ions in complexes, 2) a graphical representation of the properties-two typical numbers c and x for each metal ion-in some map across the c/x-space, which additionally contains information about biological functions of these metal ions, i.e. whether they are essential in general (e.g. Mg, Mn, Zn) or, for a few organisms of various kinds (e.g. Cd, V), not essential (e.g. rare earth element ions) or even generally highly toxic (Hg, U). It is hypothesized that, if coordination properties of metals control their biological ‘feasibility’ in some way, this should show up in the mappings (one each for mono and bidentate-bonding ligands). 3) eventually, the regression equation produced in step 1) is inverted to calculate complex stabilities pertinent to biological systems: 3a) complex stabilities are mapped for ligands delivered to soil (-water) by green plants (e.g. citrate, malate) and fungi and, compared to their unlike selectivities and demands of metal use (photosynthesis taking place or not), 3b) the evolution of the metallome during late chemical evolution is reconstructed.

Results

These maps show some ‘window of essentiality’, a small, contrived range/area of c and x parameters in which essential metal ions gather almost exclusively. c and x thus control the possibility of a metal ion becoming essential by their influencing details of metal-substrate or (in cases of catalytic activities) metal-product interactions. Exceptions are not known to be involved in biocatalysis anyhow.

Discussion

Effects of ligands secreted, e.g. from tree roots or agaric mycelia to the soil on the respective modes (selectivities) of metal bioconcentration can be calculated by the equation giving complex stability constants, with obvious ramifications for a thorough, systematic interpretation of biomonitoring data. Eventually, alterations of C, N and P-compounds during chemical evolution are investigated — which converted CH4 or CO2, N2 and other non-ligands to amino acids, etc., for example, with the latter behaving as efficient chelating ligands: Did they cause metal ions to accumulate in what was going to become biological matter and was there a selectivity, a positive bias in favour of nowessential metals (see above) in this process? Though there was no complete selectivity of this kind, neither a RNA world in which early ribozymes effected most of biocatalysis, nor a paleoatmosphere containing substantial amounts of CO could have paved the way to the present biochemistry and metallomes.

Conclusions

This way of reasoning provides a causal account for abundance distributions described earlier in the Biological System of Elements (BSE; Markert 1994, Fränzle &; Markert 2000, 2002). There is a pronounced change from chemical evolution, where but few transformations depended on metal ion catalysis to biology.

Recommendations and Perspectives

The application of this numerical approach can be used for modified, weighted evaluation of biomonitoring analytical data, likewise for the prediction of bioconcentration hazards due to a manifold of metal ions, including organometallic ones. This is relevant in ecotoxicology and biomonitoring. In combining apoproteins or peptides synthesized from scratch for purposes of catalysing certain transformations, the map and numerical approaches might prove useful for the selection of central ions which are even more efficient than the ‘natural’ ones, like for Co2+ in many Zn enzymes.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号