The life of a product begins with the initial product design concepts; the costs and potential impacts of a product are heavily influenced by the final design, the production processes, the economic and environmental costs of all raw materials. Additionally, both of these factors are very much affected by how the products are managed during and after consumer usage. Thus, there is an urgent need for a tool to facilitate the integration and assessment of environmental and economic demands into the product planning and development processes. The introduction of environmental accounting based on emergy as a tool to assist in product design is proposed. This complementary tool may be inserted into the conventional design methodology to facilitate in the selection of materials and processes as well as in the actual design of the products. To illustrate the application of the proposed method for material selection, PET (polyethylene terephthalate) bottles and aluminum cans for beverage packaging are compared. Despite the exceptional condition of aluminum recycling in Brazil, results show that the best option for beverage packages is the PET bottles. 相似文献
In regulating the use of a pesticide, one critical element taken into consideration by the U.S. Environmental Protection Agency is the magnitude of the benefits provided by the pesticide. A number of alternative, and legitimate, definitions of pesticide benefits are discussed and their implications for the regulatory process identified. Recommendations for improving the regulatory process are proposed. 相似文献
The combination of concentrated solar power–chemical looping air separation (CSP-CLAS) with an oxy-fuel combustion process for carbon dioxide (CO2) capture is a novel system to generate electricity from solar power and biomass while being able to store solar power efficiently. In this study, the computer program Advanced System for Process Engineering Plus (ASPEN Plus) was used to develop models to assess the process performance of such a process with manganese (Mn)-based oxygen carriers on alumina (Al2O3) support for a location in the region of Seville in Spain, using real solar beam irradiance and electricity demand data. It was shown that the utilisation of olive tree prunings (Olea europaea) as the fuel—an agricultural residue produced locally—results in negative CO2 emissions (a net removal of CO2 from the atmosphere). Furthermore, it was found that the process with an annual average electricity output of 18 MW would utilise 2.43% of Andalusia’s olive tree prunings, thereby capturing 260.5 k-tonnes of CO2, annually. Drawbacks of the system are its relatively high complexity, a significant energy penalty in the CLAS process associated with the steam requirements for the loop-seal fluidisation, and the gas storage requirements. Nevertheless, the utilisation of agricultural residues is highly promising, and given the large quantities produced globally (~?4 billion tonnes/year), it is suggested that other novel processes tailored to these fuels should be investigated, under consideration of a future price on CO2 emissions, integration potential with a likely electricity grid system, and based on the local conditions and real data.
The queen is the dominant female in the honeybee colony, Apis mellifera, and controls reproduction. Queen larvae are selected by the workers and are fed a special diet (royal jelly), which determines
caste. Because queens mate with many males a large number of subfamilies coexist in the colony. As a consequence, there is
a considerable potential for conflict among the subfamilies over queen rearing. Here we show that honeybee queens are not
reared at random but are preferentially reared from rare “royal” subfamilies, which have extremely low frequencies in the
colony's worker force but a high frequency in the queens reared. 相似文献