首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   532篇
  免费   19篇
  国内免费   3篇
安全科学   32篇
废物处理   48篇
环保管理   84篇
综合类   87篇
基础理论   111篇
环境理论   1篇
污染及防治   128篇
评价与监测   27篇
社会与环境   24篇
灾害及防治   12篇
  2023年   3篇
  2022年   10篇
  2021年   9篇
  2020年   9篇
  2019年   12篇
  2018年   17篇
  2017年   18篇
  2016年   22篇
  2015年   19篇
  2014年   21篇
  2013年   50篇
  2012年   28篇
  2011年   41篇
  2010年   21篇
  2009年   21篇
  2008年   23篇
  2007年   29篇
  2006年   30篇
  2005年   22篇
  2004年   15篇
  2003年   16篇
  2002年   18篇
  2001年   12篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   8篇
  1996年   8篇
  1995年   10篇
  1994年   15篇
  1993年   8篇
  1992年   6篇
  1991年   9篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1977年   1篇
  1968年   1篇
  1956年   1篇
排序方式: 共有554条查询结果,搜索用时 93 毫秒
181.
Canopy-forming shrubs are reported to be increasing at sites around the circumpolar Arctic. Our results indicate expansion in canopy cover and height of willows on Herschel Island located at 70° north on the western Arctic coast of the Yukon Territory. We examined historic photographs, repeated vegetation surveys, and conducted monitoring of long-term plots and found evidence of increases of each of the dominant canopy-forming willow species (Salix richardsonii, Salix glauca and Salix pulchra), during the twentieth century. A simple model of patch initiation indicates that the majority of willow patches for each of these species became established between 1910 and 1960, with stem ages and maximum growth rates indicating that some patches could have established as late as the 1980s. Collectively, these results suggest that willow species are increasing in canopy cover and height on Herschel Island. We did not find evidence that expansion of willow patches is currently limited by herbivory, disease, or growing conditions.  相似文献   
182.
Pickering CM  Buckley RC 《Ambio》2010,39(5-6):430-438
Skier numbers, and revenues for the multi-billion-dollar ski industry, are highly sensitive to snow cover. Previous research projected that under climate change, natural snow cover will become inadequate at 65% of sites in the Australian ski resorts by 2020. Resorts plan to compensate for reduced snowfall through additional snowmaking. For the six main resorts, however, this would require over 700 additional snow guns by 2020, requiring approximately US $100 million in capital investment, and 2,500-3,300 ML of water per month, as well as increased energy consumption. This is not practically feasible, especially as less water will be available. Therefore, low altitude ski resorts such as these may not be able to rely on snowmaking even for short-term adaptation to climate change. Instead, they are likely to seek conversion to summer activities and increased property development.  相似文献   
183.
The aqueous photocatalytic degradation of cyanate (NCO(-)), which is a long-lived neurotoxin formed during the remediation of cyanide in industrial waste streams, was studied in the ferrate(VI)-UV-TiO2-NCO(-) system. Kinetics measurements of the photocatalytic reduction of ferrate(VI) were carried out as a function of [NCO(-)], [ferrate(VI)], [O(2)], light intensity (I(o)), and amount of TiO2 in suspensions at pH 9.0. The photocatalytic reduction rate of ferrate(VI) in the studied system can be expressed as -d[Fe(VI)]/dt=kI(o)(0.5) [NCO(-)] [TiO2]. The rate of photocatalytic oxidation of cyanate with ferrate(VI) was greater than the rate in the analogous system without ferrate(VI). The possibility of involvement of reactive ferrate(V) species for this enhancement was determined by studying the reactivity of ferrate(V) with NCO(-) in a homogeneous solution using a premix pulse radiolysis technique. The rate constant for the reaction of ferrate(V) and NCO(-) in alkaline medium was estimated to be (9.60+/-0.07) x 10(2) M(-1) s(-1), which is much slower than the ferrate(VI) self-decomposition reaction (k approximately 10(7) M(-1) s(-1)). An analysis of the kinetic data in the Fe(VI)-UV-TiO2-NCO(-) system suggests that ferrate(V) is not directly participating in the oxidation of cyanate. Possible reactions in the system are presented to explain results of ferrate(VI) reduction and oxidation of cyanate.  相似文献   
184.
The increasing concentration of carbon dioxide (CO2)--the most dominant component of greenhouse gases--in the atmosphere has been of growing concern for many years. Many methods focus on CO2 capture and storage and there is always the risk of CO2 release to the environment. In this study, a new method to convert CO2 to biogas with a high content of methane (CH4) in an anaerobic system with a lab-scale upflow anaerobic sludge blanket reactor at 35 degrees C was developed. In a series of experiments, the reactor was run with and without CO2-saturated solutions including volatile fatty acids (VFAs) as sources of hydrogen. The concentration of dissolved CO2 in the influent solutions was 2.2-6.1 g/L, with corresponding chemical oxygen demand (COD) values of 2.6-8.4 g/L for the solutions. Overall CO2 removal values of 2.7-20 g/day (49-88% conversion) were obtained for the organic loading rates (OLR) and CO2 loading rates of 8-36 gCOD/L day and 6-26 gCO2/L x day, respectively with CH4 purity of above 70%. Also, VFA and COD removal were in the range of 79-95% and 75-90%, respectively. Methanogenic activities of the cultures with the concentrations measured as volatile suspended solids (VSSs) were 0.12-0.40 L CH4/gVSS x d with the highest value for the system containing acetic acid. This anaerobic method can be applied to reduce CO2 emitted to the atmosphere from a wide variety of industrial point sources with a value-added product, CH4.  相似文献   
185.
In response to reduced sulphur emissions, there has been a large decrease in sulphate (; −0.97 μeq l−1 year−1) and hydrogen (−1.18 μeq l−1 year−1) ion concentration in bulk precipitation between 1980 and 2000 at Plastic Lake in central Ontario. The benefit of this large reduction in deposition on stream water chemistry was assessed using the gauged outflow from a conifer-forested catchment (PC1; 23.3 ha), which is influenced by a small wetland located immediately upstream of the outflow. Sulphate concentrations declined, but not significantly due to large inter-annual variation in concentration. Between 1980 and 2000, there were significant increases in dissolved organic carbon, ammonium and potassium concentration likely reflecting increased mineralisation in the wetland. Calcium concentrations in PC1 decreased during the two decade period (−2.24 μeq l−1 year−1), as a consequence there was no improvement in stream pH and the Ca:Al ratio in PC1 continued to decline. A similar response was noted in an upland-draining sub-catchment of PC1-08 that has been monitored since 1987. Despite large reductions in deposition and almost complete retention of nitrogen in soil, there has been no improvement (in terms of pH) in stream water at PC1 due to a combination of soil acidification and climatic (droughts, increased mineralisation) perturbations.  相似文献   
186.
Heavy metal contamination of sediments is hazardous to benthic organisms and needs more attention in order to prevent entry of these heavy metals into the food chain. Biosurfactants have shown the capability to remove heavy metals from soils and sediments. The objective of this research was to evaluate the performance of rhamnolipid, a glycolipid biosurfactant, in a continuous flow configuration (CFC) for removal of heavy metals (copper, zinc, and nickel) from the sediments taken from Lachine Canal, Canada, to simulate a flow through remediation technique. In this configuration, rhamnolipid solution with a constant rate was passed through the sediment sample within a column. Important parameters such as the concentration of rhamnolipid and the additives, time and the flow rate were investigated. The removal of heavy metals from sediments was up to 37% of Cu, 13% of Zn, and 27% of Ni when rhamnolipid without additives was applied. Adding 1% NaOH to 0.5% rhamnolipid improved the removal of copper by up to 4 times compared with 0.5% rhamnolipid alone. This information is valuable for designing a remediation protocol for sediment washing.  相似文献   
187.
188.
189.
190.
Abstract: Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water‐mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two‐thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large‐scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free‐flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large‐scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream‐system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and terrestrial ecosystems. Linkages between headwaters and downstream ecosystems cannot be discounted when addressing large‐scale issues such as hypoxia in the Gulf of Mexico and global losses of biodiversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号