Airborne microorganisms, especially the pathogenic microorganisms, emitted from animal feeding operations (AFOs) may harm the environment and public health and threaten the biosecurity of the farm and surrounding environment. Electrolyzed water (EW), which was considered to be an environmentally friendly disinfectant, may be a potential spraying medium of wet scrubber for airborne microorganism emission reduction. A laboratory test was conducted to investigate the airborne bacteria (CB) removal efficiency of the wet scrubber by EW spray with different designs and operating parameters. Both the available choline (AC) initial loss rate and AC traveling loss rate of acidic electrolyzed water (AEW; pH = 1.35) were much higher than those of slightly acidic electrolyzed water (SAEW; pH = 5.50). Using one spraying stage with 4 m sec?1 air speed in the duct, the no detect lines (NDLs) of SAEW (pH = 5.50) for airborne Escherichia coli, Staphylococcus aureus, and Salmonella enteritidis removal were all 50 mg L?1, whereas the NDLs of AEW (pH = 1.35) for airborne E. coli, S. aureus, and S. enteritidis removal increased to 70, 90, and 90 mg L?1, respectively. The NDLs of SAEW (pH = 5.50) for airborne E. coli, S. aureus, and S. enteritidis were lower than those of AEW (pH = 1.35) at single spraying stage. Increase in the number of stages lowered the NDLs of both SAEW (pH = 5.50) and AEW (pH = 1.35) for airborne E. coli, S. aureus, and S. enteritidis. EW with a higher available chlorine concentration (ACC) was needed at air speed of 6 m sec?1 to reach the same airborne CB removal efficiency as that at air speed of 4 m sec?1. The results of this study demonstrated that EW spray wet scrubbers could be a very effective and feasible airborne CB mitigation technology for AFOs.
Implications: It is difficult to effectively reduce airborne bacteria emitted from animal feeding operations (AFOs). Electrolyzed water (EW) with disinfection effect and acidity is a potential absorbent for spray in wet scrubber to remove microorganisms and ammonia. Based on the field test results, a laboratory experiment we conducted this time was to optimize the design and operation parameters to improve the airborne bacteria removal efficiency. A better understanding of the EW application in the wet scrubber can contribute to the mitigation of airborne bacteria from animal houses and improve the atmosphere air quality. 相似文献
Studies on the effects of 21 fungicides and five pyrethroid insecticides on growth of
, emergence and survival of alfalfa seed and the efficacy of the chemicals in control of Verticillium wilt pathogens were conducted. 相似文献
A novel class of visible light-activated photocatalysts was prepared by codoping TiO(2) with cerium and iodine (Ce-I-TiO(2)). The particles were characterized using the Brunauer-Emmett-Teller method, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Visible light absorption. Particles of Ce-I-TiO(2) had greater photoabsorption in the 400-800 nm wavelength range than iodine-doped TiO(2) (I-TiO(2)). The effects on the photocatalytic degradation of oxalic acid under visible light or UV-Visible light irradiation were investigated. The photocatalytic activity of Ce-I-TiO(2) calcined at 673 K was significantly higher than that of Ce-I-TiO(2) calcined at 773 K and I-TiO(2) calcined at 673 K in aqueous oxalic acid solution under visible light or UV-Visible light irradiation. Under visible light irradiation, oxalic acid was first adsorbed on the surface of the catalysts rather than reacted with free radicals in the bulk solution, and then oxidized by (·)OH(ads) to CO(2), which was verified by studying the effects of nitrogen purging and scavengers, as well as by gas chromatography/mass spectrometry. 相似文献
In this work, zinc ferrite spinel with different zinc contents (ZnxFe3-xO4) was synthesized by a hydrothermal method and used for removing As(V) in aqueous solution. X-ray diffraction (XRD) results indicated that in the crystal structure of ZnxFe3-xO4, the zinc atoms tended to occupy the octahedral sites for x?<?0.6 and diffused into the tetrahedral sites gradually with x?>?0.6. The size of ZnxFe3-xO4 crystallites increased with the increasing zinc content. Batch adsorption experiments showed that the adsorption isotherms could be well described by the Langmuir model, while the adsorption kinetics followed the pseudo-second-order kinetic model. Zinc ferrite exhibited the highest adsorption capacity towards As(V) when x?=?0.6. Study of the mechanism indicated that doping with zinc increased the number of surface hydroxyl groups on ferrite spinel, and thus enhanced the adsorption capacity when x?=?0.6. This work revealed the effects of doping site and content of metal atoms on the adsorption ability of ferrite spinel towards As(V). 相似文献