首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29679篇
  免费   282篇
  国内免费   168篇
安全科学   729篇
废物处理   1321篇
环保管理   3530篇
综合类   4776篇
基础理论   7836篇
环境理论   14篇
污染及防治   7515篇
评价与监测   1977篇
社会与环境   2247篇
灾害及防治   184篇
  2022年   245篇
  2021年   247篇
  2019年   196篇
  2018年   374篇
  2017年   418篇
  2016年   619篇
  2015年   439篇
  2014年   724篇
  2013年   2321篇
  2012年   884篇
  2011年   1231篇
  2010年   993篇
  2009年   1027篇
  2008年   1247篇
  2007年   1316篇
  2006年   1150篇
  2005年   1016篇
  2004年   975篇
  2003年   958篇
  2002年   889篇
  2001年   1151篇
  2000年   847篇
  1999年   477篇
  1998年   339篇
  1997年   379篇
  1996年   363篇
  1995年   428篇
  1994年   397篇
  1993年   367篇
  1992年   361篇
  1991年   355篇
  1990年   395篇
  1989年   351篇
  1988年   315篇
  1987年   309篇
  1986年   292篇
  1985年   272篇
  1984年   325篇
  1983年   271篇
  1982年   333篇
  1981年   260篇
  1980年   245篇
  1979年   251篇
  1978年   228篇
  1977年   203篇
  1976年   181篇
  1974年   208篇
  1973年   212篇
  1972年   200篇
  1971年   184篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
991.
Recent adoption of national rules for organic crop production have stimulated greater interest in meeting crop N needs using manures, composts, and other organic materials. This study was designed to provide data to support Extension recommendations for organic amendments. Specifically, our objectives were to (i) measure decomposition and N released from fresh and composted amendments and (ii) evaluate the performance of the model DECOMPOSITION, a relatively simple N mineralization/immobilization model, as a predictor of N availability. Amendment samples were aerobically incubated in moist soil in the laboratory at 22 degrees C for 70 d to determine decomposition and plant-available nitrogen (PAN) (n = 44), and they were applied preplant to a sweet corn crop to determine PAN via fertilizer N equivalency (n = 37). Well-composted materials (n = 14) had a single decomposition rate, averaging 0.003 d(-1). For uncomposted materials, decomposition was rapid (>0.01 d(-1)) for the first 10 to 30 d. The laboratory incubation and the full-season PAN determination in the field gave similar estimates of PAN across amendments. The linear regression equation for lab PAN vs. field PAN had a slope not different from one and a y-intercept not different than zero. Much of the PAN released from amendments was recovered in the first 30 d. Field and laboratory measurements of PAN were strongly related to PAN estimated by DECOMPOSITION (r(2) > 0.7). Modeled PAN values were typically higher than observed PAN, particularly for amendments exhibiting high initial NH(4)-N concentrations or rapid decomposition. Based on our findings, we recommend that guidance publications for manure and compost utilization include short-term (28-d) decomposition and PAN estimates that can be useful to both modelers and growers.  相似文献   
992.
Micro-X-ray fluorescence (micro-XRF) microprobe analysis and micro-X-ray absorption near-edge structure (micro-XANES) spectroscopy were employed to identify Fe and Mn phases and their association with selected metals in two biosolids (limed composted [LC] and Nu-Earth) before and after treatment to remove organic carbon (OC). Spatial correlations derived from elemental mapping of XRF images showed strong correlations between Fe and Cd, Cr, Pb, or Zn (r2= 0.65-0.92) before and after removal of most of the OC. The strong correlation between Fe and Cu that was present in intact samples disappeared after OC removal, suggesting that Cu was associated with OC coatings that may have been present on Fe compounds. Except for Fe and Cr, the spatial correlations of metals with Mn were improved after treatment to remove OC, indicating that the treatment may have altered more than the OC in the system. The Fe micro-XANES spectra of the intact biosolids sample showed that every point had varying mixtures of Fe(II and III) species and no two points were identical. The lack of uniformity in Fe species in the biosolids sample illustrates the complexity of the materials and the difficulty of studying biosolids using conventional analytical tools or chemical extraction techniques. Still, these microscopic observations provide independent information supporting the previous laboratory and field hypothesis that Fe compounds play a major role in retention of environmentally important trace elements in biosolids. This could be due to co-precipitation of the metals with Fe, adsorption of metals by Fe compounds, or a combination of both mechanisms.  相似文献   
993.
The typical method of cool-season grass-seed production in Mediterranean climates briefly exposes surface waters to potentially high concentrations of the herbicide diuron [3-(3,4-dichlorophenyl)-1,1-dimethyl urea] during the initial season of growth. To better understand the process, and the degree, of diuron transport from agricultural fields, two grass-seed fields in the Willamette Valley of Oregon were monitored for diuron loss in surface runoff and tile drainage during the first wet season after planting. Initial diuron concentrations in surface runoff were high (>1000 microg L(-1) in one field and >100 microg L(-1) in the other), though they decreased by two orders of magnitude by the end of the season. Concentrations in the tile drains were as much as 1000 times lower than in the surface runoff during the first few weeks of runoff events, and they remained lower than surface water concentrations throughout the season. Total losses in surface runoff were between 1.3 and 3% of the amount applied-much higher than losses via the tile drains. It is also shown by means of a simple first-order decay model that, when little information is available, it may be best to describe diuron depletion in runoff water as a function of cumulative rainfall during the wet season.  相似文献   
994.
Forage-based livestock systems have been implicated as major contributors to deteriorating water quality, particularly for phosphorus (P) from commercial fertilizers and manures affecting surface and ground water quality. Little information exists regarding possible magnitudes of nutrient losses from pastures that are managed for both grazing and hay production and how these might impact adjacent bodies of water. We examined the changes that have occurred in soil fertility levels of rhizoma peanut (Arachis glabrata Benth.)-based beef cattle pastures (n = 4) in Florida from 1988 to 2002. These pastures were managed for grazing in spring followed by haying in late summer and were fertilized annually with P (39 kg P2O5 ha(-1)) and K (68 kg K2O ha(-1)). Additionally, we investigated trends in water quality parameters and trophic state index (TSI) of lakes (n = 3) associated with beef cattle operations from 1993 to 2002. Overall, there was no spatial or temporal buildup of soil P and other crop nutrients despite the annual application of fertilizers and daily in-field loading of animal waste. In fact, soil fertility levels showed a declining trend for crop nutrient levels, especially soil P (y = 146.57 - 8.14 x year; r2= 0.75), even though the fields had a history of P fertilization and the cattle were rotated into the legume fields. Our results indicate that when nutrients are not applied in excess, cow-calf systems are slight exporters of P, K, Ca, and Mg through removal of cut hay. Water quality in lakes associated with cattle production was "good" (30-46 TSI) based on the Florida Water Quality Standard. These findings indicate that properly managed livestock operations may not be major contributors to excess loads of nutrients (especially P) in surface water.  相似文献   
995.
The objective of this study was to quantify C and N mineralization rates from a range of organic amendments that differed in their total C and N contents and C quality, to gain a better understanding of their influence on the soil N cycle. A pelletized poultry manure (PP), two green waste-based composts (GWCa, GWCb), a straw-based compost (SBC), and a vermi-cast (VER) were incubated in a coarse-textured soil at 15 degrees C for 142 d. The C quality of each amendment was determined by chemical analysis and by 13C nuclear magnetic resonance (NMR). Carbon dioxide (CO2-C) evolution was determined using alkali traps. Gross N mineralization rates were calculated by 15N isotopic pool dilution. The CO2-C evolution rates and gross N mineralization rates were generally higher in amended soils than in the control soil. With the exception of GWCb all amendments released inorganic N at concentrations that would be high enough to warrant a reduction in inorganic N fertilizer application rates. The amount of N released from PP was high indicating that application rates should be reduced, or alternative amendments used, to minimize leaching losses in regions where ground water quality is of concern. There was a highly significant relationship between CO2-C evolution and gross N mineralization (R2= 0.95). Some of the chemically determined C quality parameters had significant relationships (p < 0.05) with both the cumulative amounts of C and N evolved. However, we found no significant relationships between 13C NMR spectral groupings, or their ratios, and either the CO2-C evolved or gross N mineralized from the amendments.  相似文献   
996.
Different livestock feeds manipulations have been reported to reduce the total P concentration in manure. Information on the influence of these dietary manipulation strategies on the forms of P in manure is, however, limited. This study was, therefore, conducted to investigate the effect of diet manipulation through feed micronization and enzyme supplementation on the forms of P in swine manure. Eight growing pigs were fed four diets: barley-raw pea (BRP), barley-micronized pea (BMP), barley-raw pea with enzyme (BRPE), and barley-micronized pea with enzyme (BMPE) in a 4 x 4 Latin square design. Because we are interested in the effect of enzyme cocktail and pea micronization on manure P, we did not reduce the non-phytate P with enzyme addition in this study. The fecal material and urine were collected and analyzed for total P. Fecal material was fractionated to determine the total P in H2O-, NaHCO3-, NaOH-, and HCl-extractable fractions. The total P in the residual fractions was also determined. About 98% of the total P excreted by the pigs was found in the fecal material. Inclusion of micronized pea in pig diet did not have any significant effect (p > 0.1) on either the total P or the different P fractions in the manure. The labile P (the sum of H2O-P and NaHCO3-P) was significantly reduced (p < 0.05) by the addition of enzyme to swine diets. Pigs fed the BRPE and BMPE had 14 and 18% lower labile P, respectively, compared with pigs fed the BRP. Enzyme addition to pig diets reduced not only the total P in manure, but also the labile P fraction, which is of great environmental concern. Thus, the potential of P loss to runoff and the subsequent eutrophication can be reduced by enzyme addition to pig diets.  相似文献   
997.
To support EU policy, indicators of pesticide leaching at the European level are required. For this reason, a metamodel of the spatially distributed European pesticide leaching model EuroPEARL was developed. EuroPEARL considers transient flow and solute transport and assumes Freundlich adsorption, first-order degradation and passive plant uptake of pesticides. Physical parameters are depth dependent while (bio)-chemical parameters are depth, temperature, and moisture dependent. The metamodel is based on an analytical expression that describes the mass fraction of pesticide leached. The metamodel ignores vertical parameter variations and assumes steady flow. The calibration dataset was generated with EuroPEARL and consisted of approximately 60,000 simulations done for 56 pesticides with different half-lives and partitioning coefficients. The target variable was the 80th percentile of the annual average leaching concentration at 1-m depth from a time series of 20 yr. The metamodel explains over 90% of the variation of the original model with only four independent spatial attributes. These parameters are available in European soil and climate databases, so that the calibrated metamodel could be applied to generate maps of the predicted leaching concentration in the European Union. Maps generated with the metamodel showed a good similarity with the maps obtained with EuroPEARL, which was confirmed by means of quantitative performance indicators.  相似文献   
998.
Biostimulation has been used at various contaminated sites to promote the reductive dechlorination of trichloroethylene (TCE), but the addition of carbon and energy donor also stimulates bacteria that use Fe(III) as the terminal electron acceptor (TEA) in potential competition with dechlorination processes. Microcosm studies were conducted to determine the influence of various carbon donors on the extent of reductive dissolution of aquifer solids containing Fe(III) and arsenic. Glucose, a fermentable and respirable carbon donor, led to the production of 1500 mg Fe(II) kg(-1), or 24% of the total Fe in the aquifer sediment being reduced to Fe(II), whereas the same concentration of carbon as acetate resulted in only 300 mg Fe(II) kg(-1) being produced. The biogenic Fe(II) produced with acetate was exclusively associated with the solid phase whereas with fermentable carbon donors as whey and glucose, 22 and 54% of the Fe(II) was in solution. With fermentation, some of the metabolites appear to be electron shuttling chemicals and chelating agents that facilitate the reductive dissolution of even crystalline Fe(III) oxides. Without the presence of electron shuttling chemicals, only surficial Fe in direct contact with the bacteria was bioavailable, as illustrated when acetate was used. Regardless of carbon donor type and concentration, As concentrations in the water exceeded drinking water standards. The As dissolution appears to have been the result of the direct use of As as an electron acceptor by dissimilatory arsenic reducing bacteria. Our findings indicate that selection of the carbon and energy donor for biostimulation for remediation of chlorinated solvent impacted aquifers may greatly influence the extent of the reductive dissolution of iron minerals in direct competition with dechlorination processes. Biostimulation may also result in a significant release of As to the solution phase, contributing to further contamination of the aquifer.  相似文献   
999.
Plant species vary in response to atmospheric CO2 concentration due to differences in physiology, morphology, phenology, and symbiotic relationships. These differences make it very difficult to predict how plant communities will respond to elevated CO2. Such information is critical to furthering our understanding of community and ecosystem responses to global climate change. To determine how a simple plant community might respond to elevated CO2, a model regenerating longleaf pine community composed of five species was exposed to two CO2 regimes (ambient, 365 micromol mol(-1) and elevated, 720 micromol mol(-1)) for 3 yr. Total above- and belowground biomass was 70 and 49% greater, respectively, in CO2-enriched plots. Carbon (C) content followed a response pattern similar to biomass, resulting in a significant increase of 13.8 Mg C ha(-1) under elevated CO2. Responses of individual species, however, varied. Longleaf pine (Pinus palustris Mill.) was primarily responsible for the positive response to CO2 enrichment. Wiregrass (Aristida stricta Michx.), rattlebox (Crotalaria rotundifolia Walt. Ex Gmel.), and butterfly weed (Asclepias tuberosa L.) exhibited negative above- and belowground biomass responses to elevated CO2, while sand post oak (Quercus margaretta Ashe) did not differ significantly between CO2 treatments. As with pine, C content followed patterns similar to biomass. Elevated CO2 resulted in alterations in community structure. Longleaf pine comprised 88% of total biomass in CO2-enriched plots, but only 76% in ambient plots. In contrast, wiregrass, rattlebox, and butterfly weed comprised 19% in ambient CO2 plots, but only 8% under high CO2. Therefore, while longleaf pine may perform well in a high CO2 world, other members of this community may not compete as well, which could alter community function. Effects of elevated CO2 on plant communities are complex, dynamic, and difficult to predict, clearly demonstrating the need for more research in this important area of global change science.  相似文献   
1000.
The performance of an aerated submerged fixed-film reactor (ASFFR) under simultaneous organic and ammonium loading and its effect on nitrification was studied. Organic loadings varied in the range of 1.93 to 5.29 g chemical oxygen demand (COD) m-2 d-1 and NH4-N loadings were in the range of 116 to 318 mg NH4-N m-2 d-1. Increments of loading rates were obtained both by increasing the flow rate and increasing the influent substrate in individual pilot runs. Results showed that with organic loading rates up to 3.97 g COD m-2 d-1, complete nitrification was achievable. Although high organic loading such as 5.29 g COD m-2 d-1 could cause nitrification to stop, shifting to lower organic loadings made nitrification start and set rapidly to its previous steady-state concentrations. Comparison of results showed that in the ASFFR, nitrification would be severely affected by an organic loading rate of 5.29 g COD m-2 d-1 by increasing either the flow or the influent substrate. It should be noted that the average value of dissolved oxygen was 3.4 mg L-1 with an air supply of 15 L min-1, and there was no indication of oxygen limitation. The results of this study show the flexibility of ASFFRs under changing organic loads. Furthermore, for achieving complete nitrification and optimum application of these reactors for protecting receiving water from the environmental hazards of ammonium, the maximum organic loading that would present complete nitrification should be considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号