首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
环保管理   1篇
污染及防治   1篇
评价与监测   11篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   6篇
  1999年   1篇
  1980年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Analytical chemistry is an important tier of environmental protection and has been traditionally linked to compliance and/or exposure monitoring activities for environmental contaminants. The adoption of the risk management paradigm has led to special challenges for analytical chemistry applied to environmental risk analysis. Namely, methods developed for regulated contaminants may not be appropriate and/or applicable to risk management scenarios. This paper contains examples of analytical chemistry applied to risk management challenges broken down by the analytical approach and analyte for some selected work in our laboratory. Specific techniques discussed include stable association complex electrospray mass spectrometry (cESI-MS), gas chromatography-mass spectrometry (GC-MS), split-flow thin cell (SPLITT) fractionation and matrix-assisted laser desorption time of flight mass spectrometry (MALDI-ToF-MS). Specific analytes include haloacetic acids (HAA9), perchlorate, bromate, triazine degradation products, metal-contaminated colloids and Cryptosporidium parvum oocysts.  相似文献   
2.
Interest in possible sources of perchlorate (ClO4) that could lead to environmental release has been heightened since the Environmental Protection Agency placed this anion on its Contaminant Candidate List for drinking water. Although recent investigations have suggested that fertilizers are minor contributors to environmental perchlorate contamination overall, there is still interest in screening commercial products for possible contamination and quantitating perchlorate when it is found. Ion chromatography (IC) has been used for this application owing to its speed, low detection limits, widespread availability, and moderate ruggedness relative to other techniques. However, fertilizer matrixes complicate the IC analysis relative to potable water matrixes. In this study, the performance of poly(vinyl alcohol) gel resin IC columns (100 mm and 150 mm) was evaluated for fertilizer matrixes using method EPA/600/R-01/026. The NaOH eluent included an organic salt, sodium 4-cyanophenoxide. Detection was by suppressed conductivity. A set of 55 different field samples representing 48 products and previously used by the EPA to assess occurrence of perchlorate in fertilizers (EPA/600/R-01/049) was reanalyzed on the 150 mm column. The 100 mm column was used to further investigate the positive hits. Both columns gave satisfactory performance in fertilizer matrixes, with spike recoveries (+/- 15%), assured reporting levels (0.5-225 microg g(-1) except for one at 1,000 microg g(-1)), accuracy (relative error < 30% always and most < 15%), and precision [injection-to-injection reproducibility < 3% relative standard deviation (RSD)] comparable to those reported in other studies. Performance did not vary substantially between column lengths. Lastly, the results of this investigation provided further evidence in support of the conclusions that had been reached previously by the EPA on the occurrence of perchlorate in fertilizers.  相似文献   
3.
In studies on the formation of disinfection byproducts (DBPs), it is necessary to scavenge residual active (oxidizing) chlorine in order to fix the chlorination byproducts (such as haloethanoates) at a point in time. Such research projects often have distinct needs from requirements for regulatory compliance monitoring. Thus, methods designed for compliance monitoring are not always directly applicable, but must be adapted. This research describes an adaptation of EPA Method 552 in which ascorbic acid treatment is shown to be a satisfactory means for reducing residual oxidizing chlorine, i.e., HOCl, ClO-, and Cl2, prior to determining concentrations of halocarboxylates. Ascorbic acid rapidly reduces oxidizing chlorine compounds, and it has the advantage of producing inorganic halides and dehydroascorbic acid as opposed to halogenated organic molecules as byproducts. In deionized water and a sample of chlorinated tap water, systematic biases relative to strict adherence to Method 552 were precise and could be corrected for using similarly treated standards and analyte-fortified (spiked) samples. This was demonstrated for the quantitation of chloroethanoate, bromoethanoate, 2,2-dichloropropanoate (dalapon), trichloroethanoate, bromochloroethanoate, and bromodichlorocthanoate when extracted, as the acids, into tert-butyl methyl ether (MTBE) and esterified with diazomethane prior to gas chromatography with electron capture detection (GC-ECD). Recoveries for chloroethanoate, bromoethanoate, dalapon, dichloroethanoate, trichloroethanoate, bromochloroethanoate, bromodichloroethanoate, dibromoethanoate, and 2-bromopropanoate at concentrations near the lower limit of detection were acceptable. Ascorbic acid reduction appears to be the best option presently available when there is a need to quench residual oxidants fast in a DBP formation study without generating other halospecies but must be implemented cautiously to ensure no untoward interactions in the matrix.  相似文献   
4.
Haloethanoic (haloacetic) acids (HAAs) are formed as disinfection byproducts (DBPs) during the chlorination of natural water to make it fit for consumption. Sundry analytical techniques have been applied in order to determine the concentrations of the HAAs in potable water supplies: gas chromatography (GC-MS, GC-ECD); capillary electrophoresis (CE); liquid chromatography (LC), including ion chromatography (IC); and electrospray ionization mass spectrometry (ESI-MS). Detection limits required to analyze potable water samples can be regularly achieved only by GC-ECD and ESI-MS. Without improvements in preconcentration or detector sensitivity, CE and LC will not find application to potable water supplies. The predominant GC-ECD methods use either diazomethane or acidified methanol to esterify (methylate) the carboxylic acid moiety. For HAA5 analytes, regulated under the EPA's Stage 1 DBP Rule, diazomethane is satisfactory. For HAA9 data gathered under the Information Collection Rule, acidified methanol outperforms diazomethane, which suffers from photo-promoted side reactions, especially for the brominated trihaloacetic acids. Although ESI-MS can meet sensitivity and selectivity requirements, limited instrumentation availability means this technique will not be widely used for the time being. However, ESI-MS can provide valuable confirmatory information when coupled with GC-ECD in a research setting.  相似文献   
5.
6.
Perchlorate as an environmental contaminant   总被引:5,自引:0,他引:5  
Perchlorate anion (ClO4-) has been found in drinking water supplies throughout the southwestern United States. It is primarily associated with releases of ammonium perchlorate by defense contractors, military operations, and aerospace programs. Ammonium perchlorate is used as a solid oxidant in missile and rocket propulsion systems. Traces of perchlorate are found in Chile saltpeter, but the use of such fertilizer has not been associated with large scale contamination. Although it is a strong oxidant, perchlorate anion is very persistent in the environment due to the high activation energy associated with its reduction. At high enough concentrations, perchlorate can affect thyroid gland functions, where it is mistakenly taken up in place of iodide. A safe daily exposure has not yet been set, but is expected to be released in 2002. Perchlorate is measured in environmental samples primarily by ion chromatography. It can be removed by anion exchange or membrane filtration. It is destroyed by some biological and chemical processes. The environmental occurrence, toxicity, analytical chemistry, and remediative approaches are discussed.  相似文献   
7.
The alpha-oxocarboxylates alpha-ketocarboxylates) and the corresponding alpha-oxoacids (alpha-ketoacids) have been reported as disinfection byproducts of ozonation of potable water supplies. In this analytical method, the oxo moiety is derivatized with O-(2,3,4,5,6-pentafluorobenzyl)oxylamine (PFBOA) to form an oxime which is then extracted into tert-butyl methyl ether. The carboxylic acid moiety is esterified (methylated) with diazomethane. In this study, five analytes were investigated: oxoethanoate (glyoxylate), 2-oxopropanoate (pyruvate), 2-oxobutanoate (2-ketobutyrate), 2-oxopentanoate (2-ketovalerate), and oxopropanedioate (ketomalonate, mesoxalate). The influence of Lewis acid metal cations in the water matrix was evaluated for the gas chromatographic method commonly used for the quantitation of these analytes at concentrations < or = 150 ng mL(-1). Tested metals included Ca(II), Mg(II), Fe(III), Cu(II) and Zn(II). At typical concentrations, calcium, in particular, can have profound impact, especially on oxoethanoate quantitation. Oxopropanoate experiences an increase in recovery in the presence of metal cations. 2-Oxobutanoate and 2-oxopentanoate are the most resistant to these effects, but 2-oxopentanoate shows increased recoveries at higher concentrations when assayed in the presence of calcium ion. Oxopropanedioate generally shows poorer precision and recovery when determined in solutions containing metal ions. This investigation demonstrates the significance of metal effects in the quantitative determination of these analytes and further emphasizes the importance of thorough matrix characterization and careful recovery studies with fortified (spiked) samples and blanks.  相似文献   
8.
For some utilities, new US drinking water regulations may require the removal of disinfection byproduct (DBP) precursor material as a means of minimizing DBP formation. The Environmental Protection Agency's Stage 1 DBP Rule relies on total organic carbon (TOC) concentrations as a measure of the effectiveness of treatment techniques for removing organic material that could act as DBP precursors. Accordingly, precise and accurate methods are needed for the determination of TOC and dissolved organic carbon (DOC) concentrations in raw and finished potable water supplies. This review describes the current analytical technologies and summarizes the key factors affecting measurement quality. It provides a look into the fundamental principles and workings of TOC analyzers. Current peroxydisulfuric acid wet ashing methods and combustion methods are discussed. Issues affecting quality control, such as non-zero blanks and preservation, are covered. Some of the difficulties in analyzing water for TOC and DOC that were identified up to 20 years ago still remain problematic today. Limitations in technology, reagent purity, operator skill and knowledge of natural organic matter (NOM) can preclude the level of precision and accuracy desirable for compliance monitoring.  相似文献   
9.
Treatment of potable water samples with ascorbic acid has been investigated as a means for reducing residual halogen-based oxidants (disinfectants), i.e. HOCl, Cl2, Br2 and BrCl, prior to determination of EPA Method 551.1A and 551.1B analytes. These disinfection byproducts include certain haloalkanes, haloalkenes, haloethanenitriles, haloaldehydes, haloketones and trichloronitromethane. When used as a dehalogenating agent immediately before analysis, only one analyte, 2,2,2-trichloroethanediol (chloral hydrate), is significantly decomposed. Ascorbic acid is superior to thiosulfate and sulfite as it does not destroy trichloroethanenitrile (trichloroacetonitrile), trichloronitromethane (chloropicrin) or dibromoethanenitrile (dibromoacetonitrile). Unlike ammonia or amines, it is not nucleophilic and cannot form hemiaminals (carbinolamines) with carboxaldehydes and ketones. Ascorbic acid treatment can rapidly consume (reduce) large amounts of active (oxidizing) halogen compounds, producing only inorganic halides and dehydroascorbic acid and not additional halogenated organic molecules.  相似文献   
10.
Adsorption and release of perchlorate in a variety of soils, minerals, and other media were studied when the solid media were exposed to low and high aqueous solutions of perchlorate salts. Low level ClO4- exposure was investigated by subjecting triplicate 5.0 g portions of a solid medium (38 different soils, minerals, or dusts) to 25 mL of an aqueous ammonium perchlorate (NH4ClO4) solution containing 670 ng mL(-1) (6.8 microM) perchlorate. This corresponds to a perchlorate-to-soil ratio of 3.4 microg g(-1) (34 nmol g(-1)). At this level of exposure, more than 90% of the perchlorate was recovered in the aqueous phase, as determined by ion chromatography. In some cases, more than 99% of the perchlorate remained in the aqueous phase. In some cases, the apparent loss of aqueous perchlorate was not clearly distinguishable from the variation due to experimental error. The forced perchlorate anion exchange capacities (PAECs) were studied by soaking triplicate 5.0 g portions of the solid media in 250 mL of 0.20 M sodium perchlorate (NaClO4) followed by repeated deionized water rinses (overnight soaks with mixing) until perchlorate concentrations fell below 20 ng mL(-1) in the rinse solutions. The dried residua were leached with 15.0 mL of 0.10 M sodium hydroxide. The leachates were analyzed by ion chromatography and the perchlorate concentrations thus found were subsequently used to calculate the PAECs. The measurable PAECs of the insoluble and settleable residua ranged from 4 to 150 nmol g(-1) (micromol kg(-1)), with most in the 20-50 nmol g(-1) range. In some soils or minerals, no sorption was detectable. The mineral bentonite was problematic, however. Overall, the findings support the widely accepted idea that perchlorate does not appreciably sorb to soils and that its mobility and fate are largely influenced by hydrologic and biologic factors. They also generally support the idea that intrasoil perchlorate content is depositional rather than sorptive. On the other hand, sorption (anion replacement) of perchlorate appears to occur in some soils. Therefore, the measurement of perchlorate in soils requires accounting for ion exchange phenomena; leaching with water alone may give inaccurate results. If perchlorate anion exchange is confirmed to be negligible, then leaching procedures may be simplified accordingly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号