首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
环保管理   1篇
污染及防治   1篇
评价与监测   11篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   6篇
  1999年   1篇
  1980年   1篇
排序方式: 共有13条查询结果,搜索用时 0 毫秒
11.
Treatment of potable water samples with ascorbic acid has been investigated as a means for reducing residual halogen-based oxidants (disinfectants), i.e. HOCl, Cl2, Br2 and BrCl, prior to determination of EPA Method 551.1A and 551.1B analytes. These disinfection byproducts include certain haloalkanes, haloalkenes, haloethanenitriles, haloaldehydes, haloketones and trichloronitromethane. When used as a dehalogenating agent immediately before analysis, only one analyte, 2,2,2-trichloroethanediol (chloral hydrate), is significantly decomposed. Ascorbic acid is superior to thiosulfate and sulfite as it does not destroy trichloroethanenitrile (trichloroacetonitrile), trichloronitromethane (chloropicrin) or dibromoethanenitrile (dibromoacetonitrile). Unlike ammonia or amines, it is not nucleophilic and cannot form hemiaminals (carbinolamines) with carboxaldehydes and ketones. Ascorbic acid treatment can rapidly consume (reduce) large amounts of active (oxidizing) halogen compounds, producing only inorganic halides and dehydroascorbic acid and not additional halogenated organic molecules.  相似文献   
12.
Many potable water disinfection byproducts (DBPs) that result from the reaction of natural organic matter (NOM) with oxidizing chlorine are known or suspected to be carcinogenic and mutagenic. The Ames assay is routinely used to assess an overall level of mutagenicity for all compounds in samples from potable water supplies or laboratory studies of DBP formation. Reduction of oxidizing disinfectants is required since these compounds can kill the bacteria or react with the agar, producing chlorinated byproducts. When mutagens are collected by passing potable water through adsorbing resins, active chlorine compounds react with the resin, producing undesirable mutagenic artifacts. The bioanalytical and chemoanalytical needs of drinking water DBP studies required a suitable reductant. Many of the candidate compounds failed to meet those needs, including 2,4-hexadienoic (sorbic) acid, 2,4-pentanedione (acetylacetone), 2-butenoic (crotonic) acid, 2-butenedioic (maleic and fumaric) acids and buten-2-ol (crotyl alcohol). Candidates were rejected if they (1) reacted too slowly with active chlorine, (2) formed mutagenic byproducts, or (3) interfered in the quantitation of known chlorination DBPs. L-Ascorbic acid reacts rapidly and stoichiometrically with active chlorine and has limited interactions with halogenated DBPs. In this work, we found no interference from L-ascorbic acid or its oxidation product (dehydroascorbic acid) in mutagenicity assays of chlorinated NOM using Salmonella typhimurium TA100, with or without metabolic activation (S9). This was demonstrated for both aqueous solutions of chlorinated NOM and concentrates derived from the involatile, ether-extractable chlorinated byproducts of those solutions.  相似文献   
13.
Variable availability of the purified dihydrochloride salt of 3,3'-dimethoxybenzidine (DMB; ortho-dianisidine) led us to investigate the effects of reagent purity on the analytical results obtained when this reagent is used in the photometric determination of the disinfection byproduct bromate. After analyte ions are separated by ion chromatography, a solution of DMB (post-column reagent) is added to the eluate and the DMB is oxidized, thereby producing a chromophore detected by its absorbance. Although some commercial products of undefined grade performed well, others did not. Variability was also observed between lots of purified material. Sensitivity at low concentrations (< 5 micrograms L-1 BrO3-) varied by a factor of up to 10. In some cases, the lower limit of detection for photometric detection was greater than that obtained using conductivity detection, as high as 5-7 micrograms L-1 BrO3-. An impurity or several impurities are suspected to be responsible for deviations from linearity at low analyte concentrations. This investigation underscores the need for ensuring reagent purity in environmental analyses. Ideally, chemical manufacturers will meet the needs of analytical chemists who test potable water and begin producing a high grade material in sufficient quantities to meet monitoring requirements. The establishment of third-party standards for a spectrophotometric grade of DMB.2HCl would be helpful in ensuring that a variety of manufacturers could supply products of uniformly high quality that would be suitable for the measurement of bromate in public drinking water supplies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号