首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   7篇
  国内免费   7篇
安全科学   7篇
废物处理   6篇
环保管理   29篇
综合类   18篇
基础理论   20篇
污染及防治   42篇
评价与监测   21篇
社会与环境   9篇
灾害及防治   1篇
  2023年   9篇
  2022年   11篇
  2021年   10篇
  2020年   1篇
  2018年   6篇
  2017年   7篇
  2016年   8篇
  2015年   1篇
  2014年   6篇
  2013年   8篇
  2012年   5篇
  2011年   12篇
  2010年   10篇
  2009年   7篇
  2008年   10篇
  2007年   9篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2002年   2篇
  1997年   1篇
  1994年   1篇
  1989年   1篇
  1985年   2篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1969年   1篇
  1966年   1篇
  1964年   1篇
  1961年   2篇
排序方式: 共有153条查询结果,搜索用时 15 毫秒
21.
This paper presents the results of the lidar experiments that have been performed during January 1989 through August 1990 to study the aerosol vertical distributions in the nocturnal atmosphere and their comparison with near-simultaneous aerological soundings for environmental monitoring. During the study period, the aerosol distributions showed significant stratified aerosol layer structures in the lower atmosphere throughout the south-west monsoon season (June-September), while these structures appear to be either erratic or absent during remaining months of the year. In addition, the aerosols present in the lowest air layers up to 200 m are found to contribute significantly (about 40%) to the aerosol loading in the nocturnal boundary layer at the lidar site. The pre-monsoon to winter ratio of mixing depth and ventilation coefficient were found to be 1.11 and 1.62, respectively. Thus the height of the mixed layer (around 350 m) and the associated ventilation coefficients suggest that early winter evenings tend to have higher pollution potential at the experimental site. The results indicate that the lidar technique has the potential to yield good information on the structure of the nocturnal atmosphere which is found to be influenced by the atmospheric stability conditions as revealed by aerological observations.  相似文献   
22.
Environmental Science and Pollution Research - The estrogenic property of bisphenol A (BPA) leads to potential adverse health and ecological effects. A simple, selective, and cost-effective sensor...  相似文献   
23.
Journal of Material Cycles and Waste Management - The present research work focused on fabricating Biodegradable Plate (BD plate) composed of rice husk ash, bagasse and corn starch which is...  相似文献   
24.
Reports of enhanced atrazine degradation and reduced residual weed control have increased in recent years, sparking interest in identifying factors contributing to enhanced atrazine degradation. The objectives of this study were to (i) assess the spatial distribution of enhanced atrazine degradation in 45 commercial farm fields in northeastern Colorado (Kit Carson, Larimer, Logan, Morgan, Phillips, and Yuma counties) where selected cultural management practices and soil bio-chemo-physical properties were quantified; (ii) utilize Classification and Regression Tree (CART) Analysis to identify cultural management practices and (or) soil bio-chemophysical attributes that are associated with enhanced atrazine degradation; and (iii) translate our CART Analysis into a model that predicts relative atrazine degradation rate (rapid, moderate, or slow) as a function of known management practices and (or) soil properties. Enhanced atrazine degradation was widespread within a 300-km radius across northeastern Colorado, with approximately 44% of the fields demonstrating rapid atrazine degradation activity (laboratory-based dissipation time halflife [DT50] < 3 d). The most rapid degradation rates occurred in fields that received the most frequent atrazine applications. Classification and Regression Tree Analysis resulted in a prediction model that correctly classified soils with rapid atrazine DT50 80% of the time and soils with slow degradation (DT50 > 8 d) 62.5% of the time. Significant factors were recent atrazine use history, soil pH, and organic matter content. The presence/absence of atzC polymerase chain reaction (PCR) product was not a significant predictor variable for atrazine DT50. In conclusion, enhanced atrazine degradation is widespread in northeastern Colorado. If producers know their atrazine use history, soil pH, and OM content, they should be able to identify fields exhibiting enhanced atrazine degradation using our CART Model.  相似文献   
25.
Flavobacterium columnare (FC) and Myxobacterium sp. recorded persistently associated in fish hatchery and culture system of Himalayan and Sub - Himalayan regions were found to be pathogenic. The pH and salinity played a significant role on the pathogenicity of these potent pathogens in case of Clarias batrachus and Heteropneustes fossilis. LD50 value of FC was 10(4.5) CFU in both the fishes and those of Myxobacterium sp it was 10(6) CFU ml(-1) fish(-1). Fish challenged with F. columnare and Myxobacterium sp. (@ 0.2 ml fish(-1)) individually consisting 10(5-6) cfu ml(-1) exhibited explicit symptoms of columnaris disease and marked with ulceration and saddle back lesion on the dorsal side of body. Maximum reisolation of inoculated bacteria was recorded at pH 7.0 and 7.5 and at 0.0-0.5 (F. columnare) and 0.0-1.0% (Myxobacterium sp.) salinity. Foregoing results elucidated that F. columnare was more sensitive to salinity in comparison to Myxobacterium sp. and their pathogenicity significantly (p<0.05) depends on the salinity and pH that might be one of the physical factors to control their proliferation.  相似文献   
26.
In India, groundwater assessment units are classified as overexploited areas, critical areas, semi-critical, or safe areas based on the stage of groundwater development and long-term water level trends. Intuitively, in the safe units, wells are expected to function and have good yields. Besides, in the safe units, new wells are expected to be successful. Conversely, the expectation of a successful well or wells with good yields is much lesser in the overexploited units. However, when these expectations are not met in the field, doubts are raised about the quality of assessment and its usefulness, and there is outright distrust on the agencies assessing groundwater resource by the common man as well as on the planners, administrators, and the politicians. Therefore, there is a need to present the results in a way that does not create confusion. One of the methods is to combine the assessment results with aquifer characters using geographic information system (GIS); when this is done, a whole set of newer classes emerge, which can be mapped. These classes are termed as groundwater typologies in this study. Each typology has some characteristics or traits in common, which include basic aquifer character as well as the stage of groundwater development. Thus, a class may be safe, but if the aquifer is poor, then it is separated from a class that is safe and where the aquifer is good and so on. In Andhra Pradesh, which is taken as the case study for this purpose, eight main typologies emerged, and two of these main typologies were further divided into four subtypologies each. This new way of understanding the pattern of groundwater abstraction (using GIS) has a better visual impact. Groundwater typologies are found to be much more rational and useful in developing management strategies, rather than simple listing as overexploited areas, critical areas, semi-critical areas, and safe areas as is commonly done. The typologies so delineated indicate on the map (or table) that balanced usable groundwater is in between 5 and 6 bcm/a as against the estimated balance of 20.5 bcm/a, and it is largely in poor hard rock type of aquifers, which occupy about a third of the area of the state.  相似文献   
27.
Liquefied Natural Gas (LNG) storage facilities generally include channels to convey potential spills of the liquid to an impoundment. There is increasing concern that dispersion of vapors generated by flow of LNG in a channel may lead to higher than limit vapor concentrations for safety at site boundary from channels that may be close to the dike walls. This issue is of recent concern to regulatory agencies, because the calculation of vapor hazard distance(s) from LNG flow in a channel is not required under existing LNG facility siting standards or regulations.An important parameter that directly affects the calculated LNG vapor dispersion distance is the source strength (i.e., the rate of vaporization of LNG flow from the wetted channel surfaces, as a function of spatial position and time). In this paper a model is presented which considers the variation of the depth of the flowing LNG with spatial location and time, and calculates the spatial and temporal dependence of the mass rate of vapor generation. Self similar profiles for the spatial variation of the thermal boundary layer in the liquid wetted wall and liquid depth variation are assumed. The variation with time of the location of the liquid spread front and the evaporation rate are calculated for the case of a constant LNG spill rate into a rectangular channel. The effects of two different channel slopes are evaluated. Details of the results and their impact on dispersion distances are discussed.  相似文献   
28.
29.
Environmental Science and Pollution Research - The energy storage application plays a vital role in the utilization of the solar energy technologies. There are various types of the energy storage...  相似文献   
30.
Perfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs. Surveys were conducted in central wastewater treatment plant in two industrial zones in Thailand. Samples were collected from influent, aeration tank, secondary clarifier effluent, effluent and sludge. The major purpose of this field study was to identify PFCs occurrences and mass flow during industrial WWTP. Solid-phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis. Total 10 PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoropropanoic acid (PFPA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluoronanoic acid (PFNA), perfluordecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA) were measured to identify their occurrences. PFCs were detected in both liquid and solid phase in most samples. The exceptionally high level of PFCs was detected in the treatment plant of IZ1 and IZ2 ranging between 662-847 ng L−1 and 674-1383 ng L−1, respectively, which greater than PFCs found in most domestic wastewater. Due to PFCs non-biodegradable property, both WWTPs were found ineffective in removing PFCs using activated sludge processes. Bio-accumulation in sludge could be the major removal mechanism of PFCs in the process. The increasing amount of PFCs after activated sludge processes were identified which could be due to the degradation of PFCs precursors. PFCs concentration found in the effluent were very high comparing to those in river water of the area. Industrial activity could be the one of major sources of PFCs contamination in the water environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号