首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   7篇
  国内免费   7篇
安全科学   7篇
废物处理   6篇
环保管理   29篇
综合类   18篇
基础理论   20篇
污染及防治   42篇
评价与监测   21篇
社会与环境   9篇
灾害及防治   1篇
  2023年   9篇
  2022年   11篇
  2021年   10篇
  2020年   1篇
  2018年   6篇
  2017年   7篇
  2016年   8篇
  2015年   1篇
  2014年   6篇
  2013年   8篇
  2012年   5篇
  2011年   12篇
  2010年   10篇
  2009年   7篇
  2008年   10篇
  2007年   9篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2002年   2篇
  1997年   1篇
  1994年   1篇
  1989年   1篇
  1985年   2篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1969年   1篇
  1966年   1篇
  1964年   1篇
  1961年   2篇
排序方式: 共有153条查询结果,搜索用时 15 毫秒
41.
Utilization of natural resources has multiplied globally, resulting in serious environmental deterioration and impeding the achievement of the Sustainable Development Goals (SDGs). For the harmonious development of human nourishment and the balance of nature, it is vital to evaluate environmental segments' resource usage, transformation, and residue, referred to as ‘footprint,’ in order to highlight carrying capacity and sustainability. This analysis highlights the Environmental Footprint (EF) of India per state from 2010 to 2020 in terms of hectares per capita. This study evaluates India's biological, hydrological, energy, ecological, and pollution footprints, carrying capacity, environmental pressure, and environmental deficit using 17 distinct parameters categorized under the themes of biological resource, hydrological resource, energy resource, and pollution concentration. We proposed a reoriented methodology and EF concepts that determine India's footprint, carrying capacity, nature of sustainability, environmental pressure index, and its consequential links to the 2030 SDGs. As a result, the biological resources contributed to ~50% of the environmental footprint, while hydrological, energy, and pollutants made up the remaining. Between 2010 and 2020, Delhi, Uttar Pradesh, Bihar, and West Bengal had the highest EF, while Jammu and Kashmir and the north-eastern provinces had the lowest. During the research period, the ecological deficit in India has increased overall. India impedes the 2030 SDGs; therefore, the study provides a picture of resource consumption, waste generation, economic growth, and societal changes, enabling academics and policymakers to redefine or document policy for a more sustainable future.  相似文献   
42.
The study was performed using a silicon surface barrier alpha spectrometer at Bhabha Atomic Research Centre, Mumbai, India. Through the study, the observed 210Po activity in water sample from different locations in the Domiasiat area ranges from 0.04 to 0.69 Bq/l. The daily and annual intake of 210Po through water was also estimated and the mean value of 0.72 and 263.61 Bq, respectively, were observed. It is observed that the effective doses through water were higher than the World Health Organization recommended dose of 0.05 mSv/year. The total annual effective doses through terrestrial ingestion for all the locations was studied and the mean annual effective dose was observed to be 0.315 mSv, which, when compared to the worldwide and the Indian values, was observed to be slightly higher. The mean activity in soil is found to be 124.8 ±5.7 Bq/kg and in meat the activity is 0.43 ±0.05 Bq/kg. In fishes, an activity of 0.48 ±0.07 Bq/kg in Garra lamta, 0.29 ±0.02 Bq/kg in Neolissocheilus hexaganolepis, and 3.3 ±0.1 Bq/kg in Macrobrachium sp. is observed. Activity concentration in plant samples was analyzed and the activity ranges from 0.020 ±0.002 to 9.69 ±0.35 Bq/kg. Committed effective dose by the adult population of the Domiasiat area through intake of 210Po through these food items was also determined and compared with the Indian average value and the worldwide average value.  相似文献   
43.
Soil organic matter not only affects sustainability of agricultural ecosystems, but also extremely important in maintaining overall quality of environment as soil contains a significant part of global carbon stock. Hence, we attempted to assess the influence of different tillage and nutrient management practices on various stabilized and active soil organic carbon pools, and their contribution to the extractable nitrogen phosphorus and sulfur. Our study confined to the assessment of impact of agricultural management practices on the soil organic carbon pools and extractable nutrients under three important cropping systems, viz. soybean–wheat, maize–wheat, and rice–wheat. Results indicated that there was marginal improvement in Walkley and Black content in soil under integrated and organic nutrient management treatments in soybean–wheat, maize–wheat, and rice–wheat after completion of four cropping cycles. Improvement in stabilized pools of soil organic carbon (SOC) was not proportional to the applied amount of organic manures. While, labile pools of SOC were increased with the increase in amount of added manures. Apparently, green manure (Sesbania) was more effective in enhancing the lability of SOC as compared to farmyard manure and crop residues. The KMnO4-oxidizable SOC proved to be more sensitive and consistent as an index of labile pool of SOC compared to microbial biomass carbon. Under different cropping sequences, labile fractions of soil organic carbon exerted consistent positive effect on the extractable nitrogen, phosphorus, and sulfur in soil.  相似文献   
44.
The ability of herbicides to be adsorbed by the soil and sediment and their tendency to be desorbed are some of the most important factors affecting soil and water contamination. Therefore, a sorption study was conducted to evaluate the adsorption of cyhalofop-butyl, butyl (2R)-2-[4-(4-cyano-2-fluorophenoxy) phenoxy] propanoate, in the sandy clay loam and clayey soils using a batch equilibrium method. The adsorption of cyhalofop-butyl was found positively related with the clay and organic carbon content. Freundlich constants (K f) of cyhalofop-butyl in the clayey and sandy clay loam were found to be 13.39 and 2.21, respectively. Sorption coefficients (K oc) and distribution coefficients (K d) were found to be 265.38 and 2,092.79, and 1.38 and 11.48, for sandy clay loam and clayey soils, respectively. The adsorption isotherm suggested a relatively higher affinity of cyhalofop-butyl to the adsorption sites at low equilibrium concentrations. The low value of the soil organic carbon partition coefficient (K oc) of cyhalofop-butyl in the sandy loam soil suggested its weaker adsorption in soil and thus increased its risk of mobility into water sources; hence, it should be used judiciously to prevent groundwater contamination  相似文献   
45.
In developing countries, several old municipal solid waste dumps (unlined landfills) exist adjacent to large cities, releasing contaminants to the underlying aquifer, thus posing the hazard of groundwater contamination. These uncontrolled waste dumps need to be prioritized in terms of the groundwater contamination hazard posed by them, so that necessary control and remedial measures can be undertaken in a phased manner. This paper presents a time-dependent system for evaluating groundwater contamination hazard rating of municipal solid waste dumps. The system is based on source–pathway–receptor relationships and evaluates the relative value of hazard posed by a site over its entire leaching life, on a scale of 0–1,000. The system parameters have been selected based on literature and expert opinions. The Delphi technique is used to derive the relative importance weights of the system parameters. The proposed system is compared with six selected existing hazard rating systems. The comparison, made by way of score range analysis, shows that the proposed system exhibits a much wider range of hazard scores for various scenarios of site conditions, and hence the proposed system is more sensitive to varied site conditions. The application of different systems to six municipal solid waste dumps located in four cities of India shows that, whereas the existing systems individually produce clustered scores and return the same rank to more than one site, the proposed system produces significantly varying scores and return different ranks to different sites. This demonstrates that the proposed system improves decision making and makes a better basis for prioritization of municipal solid waste dumps for adopting control and remedial measures.  相似文献   
46.
The present study was done in the Fen Complex, a Norwegian area rich in naturally occurring radionuclides, especially in thorium ((232)Th). Measurement of radioactivity levels was conducted at the decommissioned iron (Fe) and niobium (Nb) mining sites (TENORM) as well as at the undisturbed wooded sites (NORM), all open for free public access. The soil activity concentrations of (232)Th (3280-8395 Bq kg(-1)) were significantly higher than the world and the Norwegian average values and exceeded the Norwegian screening level (1000 Bq kg(-1)) for radioactive waste, while radium ((226)Ra) was present at slightly elevated levels (89-171 Bq kg(-1)). Terrestrial gamma dose rates were also elevated, ranging 2.6-4.4 μGy h(-1). Based on long-term surveys, the air concentrations of thoron ((220)Rn) and radon ((222)Rn) reached 1786 and 82 Bq m(-3), respectively. Seasonal variation in the outdoor gamma dose rates and Rn concentrations was confirmed. Correlation analyses showed a linear relationship between air radiation levels and the abundance of (232)Th in soil. The annual outdoor effective radiation doses for humans (occupancy 5 h day(-1)) were estimated to be in the range of 3.0-7.7 mSv, comparable or higher than the total average (summarized indoor and outdoor) exposure dose for the Norwegian population (2.9 mSv year(-1)). On the basis of all obtained results, this Norwegian area should be considered as enhanced natural radiation area (ENRA).  相似文献   
47.
The study to generate the baseline of natural radiation and radioactivity in East and West Khasi Hills District of Meghalaya, India was conducted to determine the different radiation dose in selected stations. Twenty stations were selected in both the district, which include Shillong the capital of Meghalaya and the Domiasiat area, which has been identified as one with a Uranium ore deposit. The dose was measured using a Micro-R-Survey meter and from the measurement it was found out that the absorbed dose in both the districts ranges from 0.04 to 1.66 microGy h(-1). The maximum dose was observed in Kylleng (0.72 microGy h(-1)) and the minimum in Mawphlang (0.06 microGy h(-1)). Average absorbed dose and equivalent dose were found to be higher than the Indian and world average values by several orders. The radiation levels distribution was found to be non-uniform through out the selected study area.  相似文献   
48.
This work reveals levels of corrosion rate and polarization behavior of carbon steel immersed in aqueous solutions of monoethanolamine (MEA) used in the absorption-based carbon dioxide (CO2) capture process for greenhouse gas reduction from industrial flue gas streams. Such information was obtained from electrochemical-based corrosion experiments under a wide range of the CO2 capture process conditions. The corrosion of carbon steel was evaluated in respect to process parameters including partial pressure of oxygen (O2), CO2 loading in solution, solution velocity, solution temperature, MEA concentration and metal surface condition. Results show that the aqueous MEA solution containing CO2 provides a favorable condition for the corrosion of carbon steel to proceed. Corrosion rate is increased by all tested process parameters. These parametric effects were explained by the electrochemical kinetic data obtained from polarization curves and by the thermodynamic data obtained from Pourbaix diagram.  相似文献   
49.
Even though plenty of literature is available on the biosynthesis of metal nanoparticles, there are serious lacunae on the mechanisms of their formation. In the present study, the mechanism of formation of mono-crystalline silver nanoparticles using a fruit extract of the ornamental tree Thevetia peruviana is emphasized, i.e. how the pH of the reaction mixture affected reaction kinetics and size of the nanoparticles. The facilitation of formation of Ag2O at higher pH resulted in a faster rate of particle formation. The diameter of the bare particles at neutral pH determined by field emission scanning electron microscopy and the hydrodynamic diameter determined by dynamic light scattering were 53 and 104 nm, respectively. The silver nanoparticles exhibited good inactivation of Escherichia coli due to participation of free radicals as evidenced by electron spin resonance spectroscopy.  相似文献   
50.
Environmental Science and Pollution Research - The present work deals with the photocatalytic degradation of p-nitrophenol as it is a United States Environmental Protection Agency-listed priority...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号