首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  国内免费   1篇
安全科学   1篇
废物处理   2篇
综合类   5篇
污染及防治   6篇
评价与监测   14篇
灾害及防治   1篇
  2020年   1篇
  2015年   3篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2005年   1篇
  2004年   10篇
  2003年   3篇
  2000年   1篇
  1998年   6篇
排序方式: 共有29条查询结果,搜索用时 140 毫秒
21.
The influence of temperature (30, 45 and 60 degrees C) and relative humidity (RH) (30%, 50% and 100%) on the degradation of poly(l-lactic acid) (PLA) films were studied. In addition, the effects of ultraviolet (UV) light (315 nm) on the degradation of PLA films were also analyzed. Various analytical techniques were applied to observe changes in the properties of PLA polymer films. FTIR spectroscopy was used as semi-quantitative method to get information about the chemistry of the degradative process. The degradation rate of PLA was enhanced by increasing temperature and RH, factors responsible for a faster reduction of the weight-average molecular weight (M(W)), of the glass transition temperature (Tg) and of the percentage of elongation at break. Moreover, UV treatment accelerated these phenomena.  相似文献   
22.
This risk assessment on vinyl chloride was carried out specifically for the marine environment, according to the methodology laid down in the European Union (EU) risk assessment Regulation (1488/94) and the Technical Guidance Documents for New and Existing Substances (TGD, 1996). Vinyl chloride is used for the production of polyvinyl chloride (PVC). The study consisted of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programmes in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the Predicted Exposure Concentration (PEC) and the Predicted No-Effect Concentration (PNEC) for the marine aquatic environment. In total 6 studies for fish, 3 studies for invertebrates and one for algae have been evaluated. The appropriate assessment factors have been used to calculate a PNEC of 210 microg/l based on short-term exposure. For coastal waters and estuaries a worst case PEC of 0.15 microg/l is derived. For river waters a typical and worst case PEC of <0.008 and 0.4 microg/l is derived, respectively. These concentrations, which do not take into account any dilution within the sea, correspond to safety margins from 500 to 250,000 between the aquatic effect and the exposure concentration. Vinyl chloride is not a 'toxic, persistent and liable to bioaccumulate' substance sensu the Oslo and Paris Conventions for the Prevention of Marine Pollution (OSPAR-DYNAMEC). It can be concluded that the present use of vinyl chloride does not present a risk to the marine aquatic environment.  相似文献   
23.
This risk assessment on 1,1,1-trichloroethane was carried out specifically for the marine environment, accordingly to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1996). 1,1,1-trichloroethane is being phased out of most uses because of its ozone depletion potential (ODP) under the Montreal Protocol. Production for emissive uses has already been phased out end 1995 in Europe and 1996 in the United States, Japan and other industrial countries. The risk assessment study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programmes in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the Predicted Environmental Concentration (PEC) and the Predicted No-Effect Concentration (PNEC) for the marine aquatic environment. In total 14 studies for fish, 7 studies for invertebrates and 9 studies for algae have been evaluated. Both acute and chronic studies have been taken into account and the appropriate assessment factors have been used to calculate a PNEC value of 21 microg/l based on long term exposure. The PEC was derived from monitoring data. The PEC was set at 0.206 microg/l (worst case) and 0.024 microg/l (typical case) for coastal waters and estuaries and 0.6 microg/l (worst case) and <0.1 microg/l (typical case) for river waters. The calculated PEC/PNEC ratios, which do not take into account any dilution factor within the sea, correspond to a safety margin of 35 to 1000 between the aquatic effect and the exposure concentration. 1,1,1-trichloroethane is not a 'toxic, persistent and liable to bioaccumulate' substance according to the criteria as mentioned by the Oslo and Paris Conventions for the Prevention of Marine Pollution (OSPAR-DYNAMEC). It can be concluded that the present use of 1,1,1-trichloroethane does not present a risk to the marine aquatic environment.  相似文献   
24.
This risk assessment on 1,1,2-trichloroethane (T112) was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 22 studies for fish, 45 studies for invertebrates and 9 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a PNEC value of 300 µg/l. Most of the available monitoring data apply to rivers and estuaries and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.01 µg T112/l water and a worst case PEC of 5 µg T112/l water. The calculated PEC/PNEC ratios give a safety margin of 60 to 30,000 between the predicted no effect concentration and the exposure concentration. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern is expected for food chain accumulation.  相似文献   
25.
This risk assessment on 1,2-dichloroethane (EDC) was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 21 studies for fish, 17 studies for invertebrates and 7 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a PNEC value of 1100 µg/l. Most of the available monitoring data apply to rivers and estuaries and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.5 µg EDC/l and a worst case PEC of 6.4 µg EDC/l. The calculated PEC/PNEC ratios give a safety margin of 170 to 2200 between the predicted no effect concentration and the exposure concentration. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern is expected for food chain accumulation.  相似文献   
26.
This risk assessment on chloroform was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 23 studies for fish, 17 studies for invertebrates and 10 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a typical PNEC value of 72 µg/l. Due to limitations of the studies evaluated, a worst PNEC of 1 µg/l could also be used. Most of the available monitoring data apply to rivers and estuaries and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.2 µg chloroform per litre of water and a worst case PEC of 5 to 11.5 µg chloroform per litre of water. The calculated PEC/PNEC ratios give a safety margin of 6 to 360 between the predicted no effect concentration and the exposure concentrations. A worst case ratio, however, points to a potential risk for sensitive species. Refinement of the assessment is necessary by looking for more data. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern is expected for food chain accumulation.  相似文献   
27.
This risk assessment on tetrachloroethylene (PER) was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 18 studies for fish, 13 studies for invertebrates and 8 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a PNEC value of 51 µg/l. Most of the available monitoring data apply to rivers and estuary waters and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.2 µg PER/l water and a worst case PEC of 2.5 µg PER/l water. The calculated PEC/PNEC ratios give a safety margin of 20 to 250 between the predicted no effect concentration and the exposure concentration. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern is expected for food chain accumulation.  相似文献   
28.
This study focused on metal release from technosols induced by synthetic root exudate (SRE). The effect of SRE composition on metal release was studied using six technosols. This was done by treating the technosols with SRE solutions having varying concentrations of low molecular weight organic acids (LMWOAs), namely oxalic, citric, and malic acids. Consequently, the physico-chemical parameters (pH and electric conductivity), Ca, Mg, Fe, Zn, and Cu release (by atomic absorption spectroscopy, AAS), chemical changes (by Fourier transform infrared, FT-IR), and organic parameters (by fluorescence) were investigated. Metal release showed to be dependent on the SRE composition and technosol characteristics. Citric acid selectively released Ca, Mg, Zn, and Cu from technosols in a concentration-dependent manner; oxalic acid showed a significant role in the release of Mg and Fe. Under relatively high LMWOA concentrations, particulate organo-mineral complexes precipitated. Additionally, technosol weathering was seen by the dissolution of humic substances and ferriallophanes, which in turn caused metal release. However, re-precipitation of these phases showed to re-sorb metals, thus underestimating the role of LMWOAs in metal release. Therefore, the selective metal leaching was highly dependent on the SRE composition and LMWOA concentrations on one hand, and on the mineral, organic, and organo-mineral components of the technosols on the other. The understanding of such processes is crucial for proposing and implementing environmental management strategies to reduce metal leaching or for the beneficial re-usage of metals (e.g., for agromining) from technosols.  相似文献   
29.
Van Herp M  Parqué V  Rackley E  Ford N 《Disasters》2003,27(2):141-153
The people of the Democratic Republic of Congo for decades have been living in a situation of chronic crisis. Violence, population displacement and the destruction of infrastructure and health services have devastated the health of the population. In 2001, Médicins Sans Frontières conducted a survey in five areas of western and central DRC to assess mortality, access to health-care, vaccination coverage and exposure to violence. High mortality rates were found in front-line zones, mainly due to malnutrition and infectious diseases. In Basankusu approximately 10 per cent of the total population and 25 per cent of the under-five population had perished in the year before the survey. Humanitarian needs remain acute across the country, particularly near the front line. Infectious-disease control and treatment are a priority, as is increasing access to health-care. Humanitarian assistance must be increased considerably, especially in rural areas and zones that have been affected directly by conflict.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号