首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23043篇
  免费   164篇
  国内免费   178篇
安全科学   619篇
废物处理   806篇
环保管理   3270篇
综合类   5249篇
基础理论   5420篇
环境理论   10篇
污染及防治   5817篇
评价与监测   1206篇
社会与环境   870篇
灾害及防治   118篇
  2021年   161篇
  2019年   165篇
  2018年   256篇
  2017年   248篇
  2016年   400篇
  2015年   313篇
  2014年   431篇
  2013年   1686篇
  2012年   586篇
  2011年   814篇
  2010年   621篇
  2009年   760篇
  2008年   826篇
  2007年   921篇
  2006年   822篇
  2005年   639篇
  2004年   681篇
  2003年   708篇
  2002年   625篇
  2001年   837篇
  2000年   599篇
  1999年   399篇
  1998年   253篇
  1997年   254篇
  1996年   276篇
  1995年   317篇
  1994年   320篇
  1993年   285篇
  1992年   297篇
  1991年   310篇
  1990年   302篇
  1989年   301篇
  1988年   282篇
  1987年   260篇
  1986年   221篇
  1985年   243篇
  1984年   254篇
  1983年   265篇
  1982年   264篇
  1981年   238篇
  1980年   218篇
  1979年   229篇
  1978年   209篇
  1977年   185篇
  1976年   187篇
  1975年   175篇
  1974年   215篇
  1973年   169篇
  1972年   174篇
  1967年   169篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
751.
Degradation of ethinyl estradiol by nitrifying activated sludge   总被引:26,自引:0,他引:26  
Degradation of ethinyl estradiol (EE2) by nitrifying activated sludge was studied with micro-organisms grown in a reactor with feedback of sludge fed with only a mineral salts medium containing ammonium as the sole energy source. Ammonium was oxidised by this sludge at a rate of 50 mg NH4+ g(-1) DW h(-1). This activated sludge was also capable of degrading EE2 at a maximum rate of 1 microg g(-1) DW h(-1). Using sludge with an insignificant nitrifying capacity of 1 mg NH4+ g(-1) DW h(-1), no degradation of EE2 was detected. Oxidation of EE2 by nitrifying sludge resulted in the formation of hydrophilic compounds, which were not further identified. Most probably degradation by nitrifying sludge results in a loss of estrogenic activity, as hydroxylated derivatives of EE2 are known to have a substantially lower pharmacological activity than EE2.  相似文献   
752.
Two plant species, arugula (Eruca sativa) and mustard (Brassica juncea) were field-grown under four soil management practices: soil mixed with municipal sewage sludge (SS), soil mixed with horse manure (HM), soil mixed with chicken manure (CM), and no-mulch bare soil (NM) to investigate the impact of soil amendments on the concentration of glucosinolates (GSLs) in their shoots. GSLs, hydrophilic plant secondary metabolites in arugula and mustard were extracted using boiling methanol and separated by adsorption on sephadex ion exchange disposable pipette tips filled with DEAE, a weak base, with a net positive charge that exchange anions such as GSLs. Quantification of GSLs was based on inactivation of arugula and mustard myrosinase and liberation of the glucose moiety from the GSLs molecule by addition of standardized myrosinase (thioglucosidase) and spectrophotometric quantification of the liberated glucose moiety. Overall, GSLs concentrations were significantly greater (1287 µg g?1 fresh shoots) in plants grown in SS compared to 929, 890, and 981 µg g?1 fresh shoots in plants grown in CM, HM, and NM soil, respectively. Results also revealed that mustard shoots contained greater concentrations of GSLs (974 µg g?1 fresh shoots) compared to arugula (651 µg g?1 fresh shoots).  相似文献   
753.
754.
Removal of nitrogen and phosphate from wastewater by addition of bittern   总被引:30,自引:0,他引:30  
Lee SI  Weon SY  Lee CW  Koopman B 《Chemosphere》2003,51(4):265-271
Removal of nitrogen and phosphate through crystallization of struvite (MgNH(4)PO(4).6H(2)O) has gained increasing interest. Since wastewaters tend to be low in magnesium relative to ammonia and phosphates, addition of this mineral is usually required to effect the struvite crystallization process. The present study evaluated the feasibility of using bittern, a byproduct of salt manufacture, as a low-cost source of magnesium ions. High reaction rates were observed; the extent of nitrogen and phosphorus removals did not change beyond 10 min. Phosphorus removals from pure solutions with bittern added were equivalent to those obtained with MgCl(2) or seawater. Nitrogen removals with bittern were somewhat lower than with the alternate Mg(2+) sources, however. Application of bittern to biologically treated wastewater from a swine farm achieved high phosphate removal, but ammonia removals were limited by imbalance in the nitrogen:phosphorus ratio.  相似文献   
755.
Abstract

A twenty hectare forest block in central Pennsylvania was aerially sprayed with diflubenzuron (Dimilin 25W®) at the dose of 33.23g A.I./ha in 9.4 litres/ha. Leaf samples were collected from the upper and lower canopies of 27 oaks and understory within this block on the day of spray, May 29, 1991. Canopy leaves were also collected on May 31, June 10, July 29 and September 26, 1991.

Recovery of diflubenzuron residues on fortified canopy‐leaf and litter‐leaf samples using analytical techniques employed in this study averaged 87.4% (SE = 7.5%) and 66.2% (SE = 8.2%), respectively.

On the day of spray, diflubenzuron residues on the upper canopy, lower canopy and understory averaged 81.18, 39.65 and 8.35 ng/cm2, respectively. Diflubenzuron residues on canopy‐leaf samples collected 2, 12, 61 and 120 days post‐spray averaged 14.83 (SE = 10.19), 16.75 (SE = 9.95), 12.84 (SE = 8.25) and 11.20 (SE = 7.52) ng/cm2, respectively. Diflubenzuron residues on litter‐leaf samples collected after leaf senescence ‐ 169 and 323 days post spray contained measurable amounts of diflubenzuron in 51 and 59% of the samples, respectively. Of the samples with measurable amounts of diflubenzuron, residues averaged 1.36 (SE = 2.44) and 0.65 ng/cm2 (SE = 0.73) respectively.  相似文献   
756.
Microbial reactions play an important role in regulating pore water chemistry as well as secondary mineral distribution in many subsurface systems and, therefore, may directly impact radionuclide migration in those systems. This paper presents a general modeling approach to couple microbial metabolism, redox chemistry, and radionuclide transport in a subsurface environment. To account for the likely achievement of quasi-steady state biomass accumulations in subsurface environments, a modification to the traditional microbial growth kinetic equation is proposed. The conditions for using biogeochemical models with or without an explicit representation of biomass growth are clarified. Based on the general approach proposed in this paper, the couplings of uranium reactions with biogeochemical processes are incorporated into computer code BIORXNTRN Version 2.0. The code is then used to simulate a subsurface contaminant migration scenario, in which a water flow containing both uranium and a complexing organic ligand is recharged into an oxic carbonate aquifer. The model simulation shows that Mn and Fe oxyhydroxides may vary significantly along a flow path. The simulation also shows that uranium(VI) can be reduced and therefore immobilized in the anoxic zone created by microbial degradation.  相似文献   
757.
Chang Chien SW  Wang MC  Huang CC 《Chemosphere》2006,64(8):1353-1361
Thermodynamic stability constants of the formation of complexes from the reactions of humic substances with various metals are usually used as parameters to judge the reactivities of both humic substances and metals. However, in calculating the thermodynamic stability constants, complicated processes for the acquisition of activities of components in reactions are absolutely inevitable. In this study, we investigated the average conditional concentration quotients of the complexes formed from the reaction of metals with humic substances and the relations of these quotients to thermodynamic stability constants. The characterized humic substances including HA (MW>1,000), FA (MW>1,000), and FA (MW<1,000) extracted from a swine compost were prepared to react with Pb, Cu, Cd, and Zn at 25 degrees C and at pH 4.00 and 6.50. Reactions of HA (MW>1,000), FA (MW>1,000), and FA (MW<1,000) with the four metals were carried out at 1:0.1, 1:0.5, 1:1, 1:5, and 1:10 ligand:metal stoichiometry. The concentrations of the free ions of Pb, Cu, Cd, and Zn in the reaction systems of metal-HA suspensions and metal-FA solutions were measured by anodic stripping voltammetry (ASV). The sequence of the average conditional concentration quotients of the formed complexes from the reaction of humic substances with metals was FA(MW<1,000)>FA(MW>1,000)>HA(MW>1,000), showing the relative reactivities of the fractions of swine compost-derived humic substances. The sequence of reacting metals with humic substances was Pb>Cu>Cd>Zn, which is in good agreement with the sequence reported by judging the thermodynamic stability constants. The average conditional concentration quotients of the formed complexes from the reaction of humic substances with metals were thus useful parameters that can be directly related to thermodynamic stability constants and other parameters.  相似文献   
758.
The effects of joint action of SO(2) and HF on the yield and quality of wheat and barley were studied by exposing them to combinations of <13,130 or 267 microg m(-3) SO(2) and 0.03 or 0.38 microg m(-3) HF in open top chambers for 90 days. At the concentrations used, SO(2) had greater effects than HF. All responses were marked by compensatory changes. The treatments had no effect on wheat yield, although SO(2) reduced shoot weight. SO(2) increased the growth and yield of barley, and HF or SO(2) increased the grain protein concentration of barley and wheat. The effects of mixtures of SO(2) and HF were complex, but often antagonistic, as the addition of HF counteracted the effect of SO(2) alone.  相似文献   
759.
The future for electrocoagulation as a localised water treatment technology   总被引:1,自引:0,他引:1  
Electrocoagulation is an electrochemical method of treating polluted water whereby sacrificial anodes corrode to release active coagulant precursors (usually aluminium or iron cations) into solution. Accompanying electrolytic reactions evolve gas (usually as hydrogen bubbles) at the cathode. Electrocoagulation has a long history as a water treatment technology having been employed to remove a wide range of pollutants. However electrocoagulation has never become accepted as a 'mainstream' water treatment technology. The lack of a systematic approach to electrocoagulation reactor design/operation and the issue of electrode reliability (particularly passivation of the electrodes over time) have limited its implementation. However recent technical improvements combined with a growing need for small-scale decentralised water treatment facilities have led to a re-evaluation of electrocoagulation. Starting with a review of electrocoagulation reactor design/operation, this article examines and identifies a conceptual framework for electrocoagulation that focuses on the interactions between electrochemistry, coagulation and flotation. In addition detailed experimental data are provided from a batch reactor system removing suspended solids together with a mathematical analysis based on the 'white water' model for the dissolved air flotation process. Current density is identified as the key operational parameter influencing which pollutant removal mechanism dominates. The conclusion is drawn that electrocoagulation has a future as a decentralised water treatment technology. A conceptual framework is presented for future research directed towards a more mechanistic understanding of the process.  相似文献   
760.
Complexing agents are frequently used in treatment technologies to remediate soils, sediments and wastes contaminated with toxic metals. The present study reports results that indicate that the rate and extent of soil organic matter (SOM) as represented by dissolved natural organic carbon (DNOC) and polycyclic aromatic hydrocarbon (PAH) desorption from a contaminated soil from a manufactured gas plant (MGP) site can be significantly enhanced with the aid of complexing agents. Desorption of DNOC and PAH compounds was pH dependent, with minimal release occurring at pH 2-3 and maximal release at pH 7-8. At pH-6, chelate solutions were shown to dissolve large amounts of humic substances from the soil compared to controls. The complexing agents mobilized polyvalent metal ions, particularly Fe and Al from the soil. Metal ion chelation may disrupt humic (metal ion)-mineral linkages, resulting in mobilization of SOM and accompanying PAH molecules into the aqueous phase; and/or reduce the degree of cross-linking in the soil organic matter phase, which could accelerate PAH diffusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号