首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13124篇
  免费   142篇
  国内免费   111篇
安全科学   360篇
废物处理   344篇
环保管理   1964篇
综合类   3282篇
基础理论   3100篇
环境理论   6篇
污染及防治   3313篇
评价与监测   580篇
社会与环境   363篇
灾害及防治   65篇
  2018年   123篇
  2017年   128篇
  2016年   184篇
  2015年   157篇
  2014年   200篇
  2013年   959篇
  2012年   309篇
  2011年   434篇
  2010年   311篇
  2009年   408篇
  2008年   448篇
  2007年   480篇
  2006年   435篇
  2005年   326篇
  2004年   348篇
  2003年   383篇
  2002年   323篇
  2001年   467篇
  2000年   323篇
  1999年   217篇
  1998年   154篇
  1997年   146篇
  1996年   179篇
  1995年   177篇
  1994年   201篇
  1993年   180篇
  1992年   183篇
  1991年   181篇
  1990年   209篇
  1989年   194篇
  1988年   166篇
  1987年   163篇
  1986年   148篇
  1985年   165篇
  1984年   147篇
  1983年   160篇
  1982年   160篇
  1981年   163篇
  1980年   149篇
  1979年   145篇
  1978年   142篇
  1977年   130篇
  1976年   136篇
  1975年   114篇
  1974年   142篇
  1973年   125篇
  1972年   125篇
  1971年   105篇
  1970年   106篇
  1967年   116篇
排序方式: 共有10000条查询结果,搜索用时 914 毫秒
681.
ABSTRACT

The application of artificial intelligence techniques for performance optimization of the fuel lean gas reburn (FLGR) system is investigated. A multilayer, feedforward artificial neural network is applied to model static nonlinear relationships between the distribution of injected natural gas into the upper region of the furnace of a coal-fired boiler and the corresponding oxides of nitrogen (NOx) emissions exiting the furnace. Based on this model, optimal distributions of injected gas are determined such that the largest NOx reduction is achieved for each value of total injected gas. This optimization is accomplished through the development of a new optimization method based on neural networks. This new optimal control algorithm, which can be used as an alternative generic tool for solving multidimensional nonlinear constrained optimization problems, is described and its results are successfully validated against an off-the-shelf tool for solving mathematical programming problems. Encouraging results obtained using plant data from one of Commonwealth Edison's coal-fired electric power plants demonstrate the feasibility of the overall approach.

Preliminary results show that the use of this intelligent controller will also enable the determination of the most cost-effective operating conditions of the FLGR system by considering, along with the optimal distribution of the injected gas, the cost differential between natural gas and coal and the open-market price of NOx emission credits. Further study, however, is necessary, including the construction of a more comprehensive database, needed to develop high-fidelity process models and to add carbon monoxide (CO) emissions to the model of the gas reburn system.  相似文献   
682.
ABSTRACT

Because of the U.S. Environmental Protection Agency’s (EPA) new ambient air quality standard for fine particles, the need is likely to continue for more detailed scientific investigation of various types of particles and their effects on human health. Epidemiology studies have become the method of choice for investigating health responses to such particles and to other air pollutants in community settings. Health effects have been associated with virtually all of the gaseous criteria pollutants and with the major constituents of airborne particulate matter (PM), including all size fractions less than about 20 gm, inorganic ions, carbonaceous particles, metals, crustal material, and biological aerosols. In many of the more recent studies, multiple pollutants or agents (including weather variables) have been significantly associated with health responses, and various methods have been used to suggest which ones might be the most important. In an ideal situation, classical least-squares regression methods are capable of performing this task. However, in the real world, where most of the pollutants are correlated with one another and have varying degrees of measurement precision and accuracy, such regression results can be misleading. This paper presents some guidelines for dealing with such collinearity and model comparison problems in both single- and multiple-pollutant regressions. These techniques rely on mean effect (attributable risk) rather than statistical significance per se as the preferred indicator of importance for the pollution variables.  相似文献   
683.
ABSTRACT

The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a “bottom-up” engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.  相似文献   
684.
ABSTRACT

In order to characterize typical indoor exposures to chemicals of interest for research on breast cancer and other hormonally mediated health outcomes, methods were developed to analyze air and dust for target compounds that have been identified as animal mammary carcinogens or hormonally active agents and that are used in commercial or consumer products or building materials. These methods were applied to a small number of residential and commercial environments to begin to characterize the extent of exposure to these classes of compounds. Phenolic compounds, including nonylphenol, octylphenol, bisphenol A, and the methoxychlor metabolite 2,2-bis (p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), were extracted, derivatized, and analyzed by gas chromatography/mass spectrometry (GC/MS)–selective ion monitoring (SIM). Selected phthalates, pesticides, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) were extracted and analyzed by GC/MS-SIM. Residential and workplace samples showed detectable levels of twelve pesticides in dust and seven in air samples. Phthalates were abundant in dust (0.3524 μg/g) and air (0.005-2.8 μg/m3). Nonylphenol and its mono- and di-ethoxylates were prevalent in dust (0.82-14 μg/g) along with estrogenic phenols such as bisphenol A and o-phenyl phenol. In this 7-sample pilot study, 33 of 86 target compounds were detected in dust, and 24 of 57 target compounds were detected in air. In a single sample from one home, 27 of the target compounds were detected in dust and 15 in air, providing an indication of chemical mixtures to which humans are typically exposed.  相似文献   
685.
ABSTRACT

Recent experiments confirm field experience that duct cleaning alone may not provide adequate protection from regrowth of fungal contamination on fiberglass duct liner (FGDL). Current recommendations for remediation of fungally contaminated fiberglass duct materials specify complete removal of the materials. But removal of contaminated materials can be extremely expensive. Therefore, a common practice in the duct-cleaning industry is the postcleaning use of antimicrobial surface coatings with the implication that they may contain or limit regrowth.

Little information is available on the efficacy of these treatments. This paper describes a study to evaluate whether three commercially available antimicrobial coatings, placed on a cleaned surface that 1 year previously had been actively growing microorganisms, would be able to prevent regrowth. The three coatings contained different active antimicrobial compounds. All three of the coatings were designed for use on heating, ventilation, and air conditioning (HVAC) system components or interior surfaces of lined and unlined duct systems. Coating I was a polyacrylate copolymer containing zinc oxide and borates. Coating II was an acrylic coating containing decabromodiphenyl oxide and antimony trioxide. Coating III was an acrylic primer containing a phosphated quaternary amine complex.

The study included field and laboratory assessments. The three treatments were evaluated in an uncontrolled field setting in an actual duct system. The laboratory study broadened the field study to include a range of humidities under controlled conditions. Both static and dynamic chamber laboratory experiments were performed. The results showed that two of the three antimicrobial coatings limited the regrowth of fungal contamination, at least in the short term (the 3-month time span of the study); the third did not. Before use in the field, testing of the efficacy of antimicrobial coatings under realistic use conditions is recommended because antimicrobials have different baseline activities and interact differently with the substrate that contains them and their local environment.  相似文献   
686.
Abstract

In siting a monitor to measure compliance with U.S. National Ambient Air Quality Standards (NAAQS) for par-ticulate matter (PM), there is a need to characterize variations in PM concentration within a neighborhood-scale region to achieve monitor siting objectives. A simple methodology is provided here for the selection of a neighborhood-scale site for meeting either of the two objectives identified for PM monitoring. This methodology is based on analyzing middle-scale (from 100 to 500 m) data from within the area of interest. The required data can be obtained from widely available dispersion models and emissions databases.

The performance of the siting methodology was evaluated in a neighborhood-scale field study conducted in Hudson County, NJ, to characterize the area’s inhalable particulate (PM10) concentrations. Air monitors were located within a 2- by 2-km area in the vicinity of the Lincoln Tunnel entrance in Hudson County. Results indicate the siting methodology performed well, providing a positive relationship between the predicted concentration rank at each site and the actual rank experienced during the field study. Also discussed are factors that adversely affected the predictive capabilities of the model.  相似文献   
687.
Abstract

This project demonstrated the biofiltration of a trichloroethylene (TCE)-contaminated airstream generated by air stripping groundwater obtained from several wells located at the Anniston Army Depot, Anniston, AL. The effects of several critical process variables were investigated to evaluate technical and economic feasibility, define operating limits and preferred operating conditions, and develop design information for a full-scale biofilter system. Long-term operation of the demonstration biofilter system was conducted to evaluate the performance and reliability of the system under variable weather conditions. Propane was used as the primary substrate necessary to induce the production of a nonspecific oxygenase. Results indicated that the process scheme used to introduce propane into the biofiltration system had a significant impact on the observed TCE removal efficiency. TCE degradation rates were dependent on the inlet contaminant concentration as well as on the loading rate. No microbial inhibition was observed at inlet TCE concentrations as high as 87 parts per million on a volume basis.  相似文献   
688.
Abstract

The multivariate receptor model Unmix has been used to analyze a 3-yr PM2.5 ambient aerosol data set collected in Phoenix, AZ, beginning in 1995. The analysis generated source profiles and overall average percentage source contribution estimates (SCEs) for five source categories: gasoline engines (33 ± 4%), diesel engines (16 ± 2%), secondary SO4 2? (19 ± 2%), crustal/soil (22 ± 2%), and vegetative burning (10 ± 2%). The Unmix analysis was supplemented with scanning electron microscopy (SEM) of a limited number of filter samples for information on possible additional low-strength sources. Except for the diesel engine source category, the Unmix SCEs were generally consistent with an earlier multivariate receptor analysis of essentially the same data using the Positive Matrix Factorization (PMF) model. This article provides the first demonstration for an urban area of the capability of the Unmix receptor model.  相似文献   
689.
Abstract

The U.S. Environmental Protection Agency has established a federal reference method (FRM) for ozone (O3) and allowed for designation of federal equivalent methods (FEMs). However, the ethylene‐chemiluminescence FRM for O3 has been replaced by the UV photometric FEM by most state and local monitoring agencies because of its relative ease of operation. Accumulating evidence indicates that the FEM is prone to bias under the hot, humid, and stagnant conditions conducive to high O3 formation. This bias may lead to overreporting hourly O3 concentrations by as much as 20–40 ppb. Measurement bias is caused by contamination of the O3 scrubber, a problem that is not detected by dry air calibration. An adequate wet test has not been codified, although a procedure has been proposed for agency consideration. This paper includes documentation of laboratory tests quantifying specific interferant responses, collocated ambient FRM/FEM monitoring results, and smog chamber comparisons of the FRM and FEMs with alternative scrubber designs. As the numbers of reports on monitor interferences have grown, interested parties have called for agency recognition and correction of these biases.  相似文献   
690.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号