首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21690篇
  免费   241篇
  国内免费   192篇
安全科学   625篇
废物处理   756篇
环保管理   3011篇
综合类   4295篇
基础理论   5470篇
环境理论   8篇
污染及防治   5670篇
评价与监测   1209篇
社会与环境   970篇
灾害及防治   109篇
  2022年   149篇
  2018年   256篇
  2017年   252篇
  2016年   387篇
  2015年   297篇
  2014年   408篇
  2013年   1625篇
  2012年   566篇
  2011年   821篇
  2010年   633篇
  2009年   733篇
  2008年   857篇
  2007年   910篇
  2006年   817篇
  2005年   643篇
  2004年   627篇
  2003年   712篇
  2002年   607篇
  2001年   897篇
  2000年   620篇
  1999年   384篇
  1998年   272篇
  1997年   268篇
  1996年   297篇
  1995年   320篇
  1994年   303篇
  1993年   272篇
  1992年   287篇
  1991年   279篇
  1990年   311篇
  1989年   297篇
  1988年   249篇
  1987年   232篇
  1986年   204篇
  1985年   238篇
  1984年   223篇
  1983年   232篇
  1982年   227篇
  1981年   223篇
  1980年   202篇
  1979年   200篇
  1978年   176篇
  1977年   176篇
  1976年   172篇
  1975年   155篇
  1974年   187篇
  1973年   172篇
  1972年   158篇
  1971年   144篇
  1970年   145篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Watershed modeling in 20 large, United States (U.S.) watersheds addresses gaps in our knowledge of streamflow, nutrient (nitrogen and phosphorus), and sediment loading sensitivity to mid‐21st Century climate change and urban/residential development scenarios. Use of a consistent methodology facilitates regional scale comparisons across the study watersheds. Simulations use the Soil and Water Assessment Tool. Climate change scenarios are from the North American Regional Climate Change Assessment Program dynamically downscaled climate model output. Urban and residential development scenarios are from U.S. Environmental Protection Agency's Integrated Climate and Land Use Scenarios project. Simulations provide a plausible set of streamflow and water quality responses to mid‐21st Century climate change across the U.S. Simulated changes show a general pattern of decreasing streamflow volume in the central Rockies and Southwest, and increases on the East Coast and Northern Plains. Changes in pollutant loads follow a similar pattern but with increased variability. Ensemble mean results suggest that by the mid‐21st Century, statistically significant changes in streamflow and total suspended solids loads (relative to baseline conditions) are possible in roughly 30‐40% of study watersheds. These proportions increase to around 60% for total phosphorus and total nitrogen loads. Projected urban/residential development, and watershed responses to development, are small at the large spatial scale of modeling in this study.  相似文献   
952.
Green infrastructure (GI) is quickly gaining ground as a less costly, greener alternative to traditional methods of stormwater management. One popular form of GI is the use of rain gardens to capture and treat stormwater. We used life cycle assessment (LCA) to compare environmental impacts of residential rain gardens constructed in the Shepherd's Creek watershed of Cincinnati, Ohio to those from a typical detain and treat system. LCA is an internationally standardized framework for analyzing the potential environmental performance of a product or service by including all stages in its life cycle, including material extraction, manufacturing, use, and disposal. Complementary to the life cycle environmental impact assessment, the life cycle costing approach was adopted to compare the equivalent annual costs of each of these systems. These analyses were supplemented by modeling alternative scenarios to capture the variability in implementing a GI strategy. Our LCA models suggest rain garden costs and impacts are determined by labor requirement; the traditional alternative's impacts are determined largely by the efficiency of wastewater treatment, while costs are determined by the expense of tunnel construction. Gardens were found to be the favorable option, both financially (~42% cost reduction) and environmentally (62‐98% impact reduction). Wastewater utilities may find significant life cycle cost and environmental impact reductions in implementing a rain garden plan.  相似文献   
953.
Remotely sensed vegetation indices correspond to canopy vigor and cover and have been successfully used to estimate groundwater evapotranspiration (ETg) over large spatial and temporal scales. However, these data do not provide information on depth to groundwater (dtgw) necessary for groundwater models (GWM) to calculate ETg. An iterative approach is provided that calibrates GWM to ETg derived from Landsat estimates of the Enhanced Vegetation Index (EVI). The approach is applied to different vegetation groups in Mason Valley, Nevada over an 11‐year time span. An uncertainty analysis is done to estimate the resulting mean and 90% confidence intervals in ETg to dtgw relationships to quantify errors associated with plant physiologic complexity, species variability, and parameter smoothing to the 100 m GWM‐grid, temporal variability in soil moisture and nonuniqueness in the solution. Additionally, a first‐order second moment analysis shows ETg to dtgw relationships are almost exclusively sensitive to estimated land surface, or maximum, ETg despite relatively large uncertainty in extinction depths and hydraulic conductivity. The EVI method of estimating ETg appears to bias ETg during years with exceptionally wet spring/summer conditions. Excluding these years improves model performance significantly but highlights the need to develop a methodology that accounts not only on quantity but timing of annual precipitation on phreatophyte greenness.  相似文献   
954.
Streamside management zone (SMZ) breakthroughs were identified and characterized to determine frequency and potential causes, in order to provide enhanced guidance for future water quality protection. Ten kilometers of SMZs were carefully examined for partial or complete breakthroughs. With partial breakthroughs the SMZ trapped sediment before it reached the stream, while complete breakthroughs appeared to have allowed sediment to have passed through with minimal restriction. A total of 41 breakthroughs occurred (33 complete, 8 partial) across 16 sites, averaging 1 complete breakthrough per 0.3 km of SMZ length. The most common complete breakthroughs were caused by stream crossings (42%), reactivation of legacy agricultural gullies (27%), and harvest related soil disturbances near/within SMZs (24%). Pearson correlations of site characteristics at breakthroughs indicated no strong relationships between breakthrough sites, representing the variable nature of these unique circumstances. Stream crossings are an intentional breakthrough for access purposes, but resulting environmental impacts can be reduced with best management practice implementation. Current recommendations for SMZs tend to work in most situations, yet further research is needed to identify causal factors and quantify breakthrough severity.  相似文献   
955.
This paper focuses on the exergetic sustainability indicators of a medium-range commercial aircraft engine for constant reference environment and ground running conditions. First, a detailed exergy analysis of turbofan engine have been performed based on engine test cell parameters. Starting from the sustainability considerations and the second law of the thermodynamics, the paper presents six exergy-based sustainability indicators. The indicators of the turbofan engine developed here in conjunction with exergetic analysis and sustainable development are exergy efficiency, waste exergy ratio, exergy destruction factor, recoverable exergy rate, environmental effect factor, and exergetic sustainability index. The investigated sustainable indicators have been calculated by using exergy analysis outputs for aircraft ground running condition. Results from this study show that values of exergy efficiency, waste exergy ratio, exergy destruction factor, recoverable exergy rate, environmental effect factor, and exergetic sustainability index of investigated turbofan engine are found to be 0.315, 0.685, 0.408, 0, 2.174, and 0.460, respectively. These parameters are expected to quantify how the turbofan engine and aircraft become more environmentally benign and sustainable.  相似文献   
956.
Headwater streams have a significant nexus or physical, chemical, and/or biological connection to downstream reaches. Generally, defined as 1st‐3rd order with ephemeral, intermittent, or perennial flow regimes, these streams account for a substantial portion of the total stream network particularly in mountainous terrain. Due to their often remote locations, small size, and large numbers, conducting field inventories of headwater streams is challenging. A means of estimating headwater stream location and extent according to flow regime type using publicly available spatial data is needed to simplify this complex process. Using field‐collected headwater point of origin data from three control watersheds, streams were characterized according to a set of spatial parameters related to topography, geology, and soils. These parameters were (1) compared to field‐collected point of origin data listed in three nearby Jurisdictional Determinations, (2) used to develop a geographic information system (GIS)‐based stream network for identifying ephemeral, intermittent, and perennial streams, and (3) applied to a larger watershed and compared to values obtained using the high‐resolution National Hydrography Dataset (NHD). The parameters drainage area and local valley slope were the most reliable predictors of flow regime type. Results showed the high‐resolution NHD identified no ephemeral streams and 9 and 65% fewer intermittent and perennial streams, respectively, than the GIS model.  相似文献   
957.
Rapid response vertical profiling instrumentation was used to document spatial variability and patterns in a small urban lake, Onondaga Lake, associated with multiple drivers. Paired profiles of temperature, specific conductance (SC), turbidity (Tn), fluorometric chlorophyll a (Chlf), and nitrate nitrogen (NO3?) were collected at >30 fixed locations (a “gridding”) weekly, over the spring to fall interval of several years. These gridding data are analyzed (1) to characterize phytoplankton (Chlf) patchiness in the lake's upper waters, (2) to establish the representativeness of a single long‐term site for monitoring lake‐wide conditions, and (3) to resolve spatial patterns of multiple tracers imparted by buoyancy effects of inflows. Multiple buoyancy signatures were resolved, including overflows from less dense inflows, and interflows to metalimnetic depths and underflows to the bottom from the plunging of more dense inputs. Three different metrics had utility as tracers in depicting the buoyancy signatures as follows: (1) SC, for salinity‐enriched tributaries and the more dilute river that receives the lake's outflow, (2) Tn, for the tributaries during runoff events, and (3) NO3?, for the effluent of a domestic waste treatment facility and from the addition of NO3? solution to control methyl mercury. The plunging inflow phenomenon, which frequently prevailed, has important management implications.  相似文献   
958.
Nitrogen and phosphorus criteria were developed for 233 km of the Yellowstone River, one of the first cases where a mechanistic model has been used to derive large river numeric nutrient criteria. A water quality model and a companion model which simulates lateral algal biomass across transects were used to simulate effects of increasing nutrients on five variables (dissolved oxygen, total organic carbon, total dissolved gas, pH, and benthic algal biomass in depths ≤1 m). Incremental increases in nutrients were evaluated relative to their impact on predefined thresholds for each variable; the first variable to exceed a threshold set the nutrient criteria. Simulations were made at a low flow, the 14Q5 (lowest average 14 consecutive day flow, July‐September, recurring one in five years), which was derived using benthic algae growth curves and EPA guidance on excursion frequency. An extant climate dataset with an annual recurrence was used, and tributary water quality and flows were coincident with the river's 10 lowest flow years. The river had different sensitivities to nutrients longitudinally, pH being the most sensitive variable in the upstream reach and algal biomass in the lower. Model‐based criteria for the Yellowstone River are as follows: between the Bighorn and Powder river confluences, 55 μg TP/l and 655 μg TN/l; from the Powder River confluence to Montana state line, 95 μg TP/l and 815 μg TN/l. Pros and cons of using steady‐state models to derive river nutrient criteria are discussed.  相似文献   
959.
Estuarine ecosystems are largely influenced by watersheds directly connected to them. In the Mobile Bay, Alabama watersheds we examined the effect of land cover and land use (LCLU) changes on discharge rate, water properties, and submerged aquatic vegetation, including freshwater macrophytes and seagrasses, throughout the estuary. LCLU scenarios from 1948, 1992, 2001, and 2030 were used to influence watershed and hydrodynamic models and evaluate the impact of LCLU change on shallow aquatic ecosystems. Overall, our modeling results found that LCLU changes increased freshwater flows into Mobile Bay altering temperature, salinity, and total suspended sediments (TSS). Increased urban land uses coupled with decreased agricultural/pasture lands reduced TSS in the water column. However, increased urbanization or agricultural/pasture land coupled with decreased forest land resulted in higher TSS concentrations. Higher sediment loads were usually strongly correlated with higher TSS levels, except in areas where a large extent of wetlands retained sediment discharged during rainfall events. The modeling results indicated improved water clarity in the shallow aquatic regions of Mississippi Sound and degraded water clarity in the Wolf Bay estuary. This integrated modeling approach will provide new knowledge and tools for coastal resource managers to manage shallow aquatic habitats that provide critical ecosystem services.  相似文献   
960.
The feeding habits of pelagic, juvenile rockfishes (Sebastes spp.) collected off Oregon in 2002, and Oregon and Washington in 2006, were examined using stomach content and stable isotope analyses. Sampling occurred along a series of transects across the shelf between Crescent City, California (Lat. 41°54.0′), and Newport, Oregon (Lat. 44°39.0′), in 2002, and off Willapa Bay, Washington (Lat. 46°40.0′), and the Columbia River, Oregon (Lat. 46°10.0′), in 2006. Species composition varied both years with distance from shore, but the predominant species were darkblotched (Sebastes crameri), canary (S. pinniger), yellowtail (2006 only; S. flavidus), and widow (S. entomelas) rockfishes. Stomach content analysis revealed that darkblotched rockfish had highly variable diets, and canary, yellowtail, and widow rockfishes exhibited a high degree of overlap in 2006. Multivariate analysis showed significant differences in diet based on distance from shore where caught, fish size, and species. Stable isotope analysis indicated that all species were feeding at about the same trophic level within each year, with a 1.5 ‰ difference in δ15N between years and regions. The difference in δ15N values may indicate a greater contribution of mesotrophic zooplankton such as euphausiids, hyperiid amphipods, and chaetognaths to fish diets in 2006. Depleted 13C values were indicative of diets based on primary production from a more offshore origin, suggesting that these rockfish had previously inhabited offshore waters. These results add to our understanding of some of the important environmental factors that affect young-of-the-year rockfishes during their pelagic phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号