首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13154篇
  免费   128篇
  国内免费   92篇
安全科学   385篇
废物处理   493篇
环保管理   1895篇
综合类   2226篇
基础理论   3498篇
环境理论   9篇
污染及防治   3264篇
评价与监测   814篇
社会与环境   691篇
灾害及防治   99篇
  2022年   112篇
  2021年   109篇
  2020年   88篇
  2019年   105篇
  2018年   185篇
  2017年   154篇
  2016年   260篇
  2015年   224篇
  2014年   303篇
  2013年   996篇
  2012年   391篇
  2011年   563篇
  2010年   457篇
  2009年   535篇
  2008年   573篇
  2007年   585篇
  2006年   502篇
  2005年   465篇
  2004年   388篇
  2003年   409篇
  2002年   396篇
  2001年   510篇
  2000年   374篇
  1999年   234篇
  1998年   146篇
  1997年   174篇
  1996年   179篇
  1995年   222篇
  1994年   208篇
  1993年   177篇
  1992年   145篇
  1991年   194篇
  1990年   181篇
  1989年   169篇
  1988年   123篇
  1987年   124篇
  1986年   131篇
  1985年   106篇
  1984年   128篇
  1983年   122篇
  1982年   132篇
  1981年   117篇
  1980年   104篇
  1979年   121篇
  1978年   81篇
  1977年   87篇
  1975年   82篇
  1973年   77篇
  1972年   68篇
  1967年   68篇
排序方式: 共有10000条查询结果,搜索用时 943 毫秒
811.
In this study, the Tsunami-caused deterioration of soil and groundwater quality in the agricultural fields of coastal Nagapattinam district of Tamilnadu state in India is presented by analyzing their salinity and sodicity parameters. To accomplish this, three sets of soil samples up to a depth of 30cm from the land surface were collected for the first six months of the year 2005 from 28 locations and the ground water samples were monitored from seven existing dug wells and hand pumps covering the study region at intervals of 3 months. The EC and pH values of both the soil and ground water samples were estimated and the spatial and temporal variability mappings of these parameters were performed using the geostatistical analysis module of ArcGIS((R)). It was observed that the spherical semivariogram fitted well with the data set of both EC and pH and the generated kriged maps explained the spatial and temporal variability under different ranges of EC and pH values. Further, the recorded EC and pH data of soil and ground water during pre-Tsunami periods were compared with the collected data and generated variability soil maps of EC and pH of the post-Tsunami period. It was revealed from this analysis that the soil quality six months after the Tsunami was nearing the pre-Tsunami scenario (EC< 1.5dSm(-1); pH<8), whereas the quality of ground water remained highly saline and unfit for irrigation and drinking. These observations were compared with the ground scenarios of the study region and possible causes for such changes and the remedial measures for taking up regular agricultural practices are also discussed.  相似文献   
812.
The measurement of the bed shear stress along vegetated river beds is essential for accurately predicting the water level, velocity and solute and sediment transport fluxes in computational hydroenvironmental models. Details are given herein of an experimental and theoretical study to determine the bed boundary shear stress along vegetated river beds introducing a novel field measuring method, namely the FliessWasserStammtisch (FST)-hemispheres. Although investigations have been conducted previously for sedimentary channels using the FST-hemispheres, this preliminary study is thought to be the first time that such hemispheres have been used to investigate the bed shear stresses in vegetated channels. FST-hemispheres were first developed by Statzner and Müller [1989. Standard hemispheres as indicators of flow characteristics in lotic benthos research. Freshwater Biology 21, 445-459] to act as an integrated indicator of the gross hydrodynamic stresses present near the bed. Test and validation data were found to be at least of the same order of magnitude for the stresses predicted from literature for sedimentary channels, with this study establishing the commencement of a database of calibrated FST-hemisphere laboratory data for vegetated channel beds. In a series of experiments, depths ranging from 0.1 to 0.28m were considered, equating directly to comparable conditions in small rivers or streams. The results of this study provide a basis for enabling the FST-hemispheres to be used to evaluate the boundary shear stress for a wider range of applications in the future, including vegetated river beds.  相似文献   
813.
It is well established that trees help to reduce air pollution, and there is a growing impetus for green belt expansion in urban areas. Identification of suitable plant species for green belts is very important. In the present study, the Air Pollution Tolerance Index (APTI) of many plant species has been evaluated by analyzing important biochemical parameters. The Anticipated Performance Index (API) of these plant species was also calculated by considering their APTI values together with other socio-economic and biological parameters. Based on these two indices, the most suitable plant species for green belt development in urban areas were identified and recommended for long-term air pollution management.  相似文献   
814.
River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies.  相似文献   
815.
Abstract: Sediment oxygen demand (SOD) is believed to be an important process affecting dissolved oxygen (DO) concentrations in blackwater streams of the southeastern coastal plain. Because very few data on SOD are available, it is common for modelers to take SOD values from the literature for use with DO models. In this study, SOD was measured in seven blackwater streams of the Suwannee River Basin within the Georgia coastal plain for between August 2004 and April 2005. SOD was measured using four in situ chambers and was found to vary on average between 0.1 and 2.3 g O2/m/day across the seven study sites throughout the study period. SOD was found to vary significantly between the watersheds within the Suwannee River Basin. However, land use was not found to be the driving force behind SOD values. Statistical analyses did find significant interaction between land use and watersheds suggesting that an intrinsically different factor in each of the watersheds may be affecting SOD and the low DO concentrations. Further research is needed to identify the factors driving SOD dynamics in the blackwater streams of Georgia’s coastal plain. Results from this study will be used by the Georgia Department of Natural Resources – Environmental Protection Division as model input data for the development and evaluation of DO total maximum daily loads in the Georgia coastal plain.  相似文献   
816.
Abstract: We present a simple modular landscape simulation model that is based on a watershed modeling framework in which different sets of processes occurring in a watershed can be simulated separately with different models. The model consists of three loosely coupled submodels: a rainfall‐runoff model (TOPMODEL) for runoff generation in a subwatershed, a nutrient model for estimation of nutrients from nonpoint sources in a subwatershed, and a stream network model for integration of point and nonpoint sources in the routing process. The model performance was evaluated using monitoring data in the watershed of the Patuxent River, a tributary to the Chesapeake Bay in Maryland, from July 1997 through August 1999. Despite its simplicity, the landscape model predictions of streamflow, and sediment and nutrient loads were as good as or better than those of the Hydrological Simulation Program‐Fortran model, one of the most widely used comprehensive watershed models. The landscape model was applied to predict discharges of water, sediment, silicate, organic carbon, nitrate, ammonium, organic nitrogen, total nitrogen, organic phosphorus, phosphate, and total phosphorus from the Patuxent watershed to its estuary. The predicted annual water discharge to the estuary was very close to the measured annual total in terms of percent errors for both years of the study period (≤2%). The model predictions for loads of nutrients were also good (20‐30%) or very good (<20%) with exceptions of sediment (40%), phosphate (36%), and organic carbon (53%) for Year 1.  相似文献   
817.
Abstract: Storm‐flow transients (i.e., hydrograph rise and fall dynamics) may represent an important aspect of understanding streamflow dynamics. However, little is known about how temporal resolution of transient data and climate variability may color these potential indicators of hydrologic pattern or condition. Warm‐season stream stage and rainfall were monitored continuously (5 min) during the 2002 water year in eight tributaries of the Little Miami River (Ohio), which drain 17‐58 km2 catchments. Rise rates generated using 5‐min data were different than those generated with mean daily data [calculated with the Indicators of Hydrologic Alteration (IHA) software], though fall rates were similar for fine and coarse temporal data. This result suggests that data with low temporal resolution may not be adequate to fully represent the dynamics of storm rise rates. Conversely, fall rates based on daily stage data (via IHA) were similar to those based on the 5‐min data, and so daily mean data may be appropriate for characterizing fall rates. We next analyzed the possible correlations between rainfall variability and storm‐flow stage dynamics. We derived rise and recession rates from storm stage hydrographs by assuming exponential rise and decay of a runoff peak. We found that raw rise rates (Rraw) were correlated with both the maximum rainfall rate and the time to the centroid of a rain event. We subsequently removed the trend based on these rainfall characteristics, which yielded new representations of rise rates abbreviated as Rrate and Rtcent, respectively, and that had lower variability than the uncorrected (raw) data. Fall rates were found to be independent of rainfall characteristics. Due to the predominant influence of stream hydrology upon aquatic biota and nutrient fluxes, our work suggests that these stage data analysis protocols can refine or otherwise reduce variability in these indices by accounting for relevant factors such as rainfall forcing. These protocols for derivation of transient indices should be tested for their potential to improve correlations between stream hydrology and temporally aligned biotic data and dissolved nutrient fluxes in streams.  相似文献   
818.
In this field experiment, sewage sludge was applied at 0, 5, 10, and 50tha(-1), and the availability of Cd, Ni, Pb, and Zn was assessed both by ryegrass uptake and by DTPA extractions. The aim was to investigate the role of important soil parameters, particularly pH, on heavy metal availability. It was found that metal uptake and extractability increased significantly in the 50tha(-1) treatment. In the 16th week of the experiment there was a significant, although temporary, increase in DTPA-extractable Cd, Ni, and Zn concentrations. Metal concentrations in ryegrass were also significantly elevated in week 20 compared to the subsequent cuttings. These fluctuations in both DTPA and ryegrass uptake occurred only at 50tha(-1) and were probably induced by a sudden pH decrease measured in the same treatment in week 16. This suggests that soils which have received high applications of sewage sludge may be prone to fluctuations in metal availability.  相似文献   
819.
Ozonation of oil sands process water removes naphthenic acids and toxicity   总被引:1,自引:0,他引:1  
Naphthenic acids are naturally-occurring, aliphatic or alicyclic carboxylic acids found in petroleum. Water used to extract bitumen from the Athabasca oil sands becomes toxic to various organisms due to the presence of naphthenic acids released from the bitumen. Natural biodegradation was expected to be the most cost-effective method for reducing the toxicity of the oil sands process water (OSPW). However, naphthenic acids are poorly biodegraded in the holding ponds located on properties leased by the oil sands companies. In the present study, chemical oxidation using ozone was investigated as an option for mitigation of this toxicity. Ozonation of sediment-free OSPW was conducted using proprietary technology manufactured by Seair Diffusion Systems Inc. Ozonation for 50min generated a non-toxic effluent (based on the Microtox bioassay) and decreased the naphthenic acids concentration by approximately 70%. After 130min of ozonation, the residual naphthenic acids concentration was 2mgl(-1): <5% of the initial concentration in the filtered OSPW. Total organic carbon did not change with 130min of ozonation, whereas chemical oxygen demand decreased by approximately 50% and 5-d biochemical oxygen demand increased from an initial value of 2mgl(-1) to a final value of 15mgl(-1). GC-MS analysis showed that ozonation resulted in an overall decrease in the proportion of high molecular weight naphthenic acids (n> or = 22).  相似文献   
820.
Smith E  Naidu R  Weber J  Juhasz AL 《Chemosphere》2008,71(4):773-780
Arsenic (As) contamination of soil poses a potential threat to human health, particularly for small children, through the incidental ingestion of soil from hand-to-mouth activity. In this study, we examined the relationship between As bioaccessibility using the simplified bioaccessibility extraction test (SBET) and the soil fractions that contribute to bioaccessible As in 12 long-term contaminated soils. Sequential fractionation of soils prior to As bioaccessibility assessment found that As was primarily associated with the specifically sorbed (3-26%), amorphous and poorly crystalline (12-82%), and the well crystalline (3-25%) oxyhydroxide Fe/Al phases with proportions varying depending on the mode of As input. Arsenic bioaccessibility in these soils ranged from less than 1% in the gossan soil to 48% in railway corridor soils. Soil fractions contributing to As bioaccessibility were found to be from the non-specifically (<1-11%), the specifically (<1-29%) sorbed and the amorphous and poorly-crystalline (30-93%) oxyhydroxide Fe/Al fractions. Significant correlations (p<0.05) were found between the As bioaccessible fraction and the amorphous and poorly-crystalline oxyhydroxide Fe/Al fractions indicating that this fraction is a key factor influencing As bioaccessibility in many anthropogenically contaminated soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号