首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   4篇
  国内免费   3篇
安全科学   3篇
废物处理   5篇
环保管理   75篇
综合类   11篇
基础理论   29篇
污染及防治   47篇
评价与监测   12篇
社会与环境   3篇
灾害及防治   2篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   1篇
  2014年   2篇
  2013年   18篇
  2012年   6篇
  2011年   8篇
  2010年   7篇
  2009年   3篇
  2008年   8篇
  2007年   6篇
  2006年   7篇
  2005年   6篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   7篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   8篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   7篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   5篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1970年   2篇
  1962年   1篇
排序方式: 共有187条查询结果,搜索用时 0 毫秒
181.
A research tool for modeling the reactive flow and transport of groundwater contaminants in multiple dimensions is presented. Arbitrarily complex coupled kinetic–equilibrium heterogeneous reaction networks, automatic code generation, transfer-function based solutions, parameter estimation, high-resolution methods for advection, and robust solvers for the mixed kinetic–equilibrium chemistry are some of the features of reactive flow and transport (RAFT) that make it a versatile research tool in the modeling of a wide variety of laboratory and field experiments. The treatment of reactions is quite general so that RAFT can be used to model biological, adsorption/desorption, complexation, and mineral dissolution/precipitation reactions among others. The integrated framework involving automated code generation and parameter estimation allows for the development, characterization, and evaluation of mechanistic process models. The model is described and used to solve a problem in competitive adsorption that illustrates some of these features. The model is also used to study the development of an in situ Fe(II)-zone by encouraging the growth of an iron-reducing bacterium with lactate as the electron donor. Such redox barriers are effective in sequestering groundwater contaminants such as chromate and TCE.  相似文献   
182.
183.
Excessive fertilization with organic and/or inorganic P amendments to cropland increases the potential risk of P loss to surface waters. The objective of this study was to evaluate the effects of soil test P level, source, and application method of P amendments on P in runoff following soybean [Glycine max (L.) Merr.]. The treatments consisted of two rates of swine (Sus scrofa domestica) liquid manure surface-applied and injected, 54 kg P ha(-1) triple superphosphate (TSP) surface-applied and incorporated, and a control with and without chisel-plowing. Rainfall simulations were conducted one month (1MO) and six months (6MO) after P amendment application for 2 yr. Soil injection of swine manure compared with surface application resulted in runoff P concentration decreases of 93, 82, and 94%, and P load decreases of 99, 94, and 99% for dissolved reactive phosphorus (DRP), total phosphorus (TP), and algal-available phosphorus (AAP), respectively. Incorporation of TSP also reduced P concentration in runoff significantly. Runoff P concentration and load from incorporated amendments did not differ from the control. Factors most strongly related to P in runoff from the incorporated treatments included Bray P1 soil extraction value for DRP concentration, and Bray P1 and sediment content in runoff for AAP and TP concentration and load. Injecting manure and chisel-plowing inorganic fertilizer reduced runoff P losses, decreased runoff volumes, and increased the time to runoff, thus minimizing the potential risk of surface water contamination. After incorporating the P amendments, controlling erosion is the main target to minimize TP losses from agricultural soils.  相似文献   
184.
Determining the appropriate criteria and designs for hazardous waste landfill covers has spawned much discussion within the environmental remediation arena. Very little reliable comparison of various technologies exists. Researchers at Los Alamos National Laboratory studied the relative hydrologic performance of four landfill cover designs—two capillary barrier designs, one modified EPA RCRA design, and one control cover. Monitoring the fate of natural precipitation for nearly four years showed that the covers with barrier layers more effectively reduced deep percolation than the control cover. Although none entirely eliminated deep percolation, the RCRA cover, incorporating a clay hydraulic barrier, most effectively controlled it. The two capillary barriers reduced deep percolation, but significant amounts were still produced. Over 90 percent of all percolation through the covers, and lateral flow within the covers, occurred during February through May each year, primarily as a result of snowmelt, early spring rains, and low evapotranspiration. The study also showed that gravel mulch surface treatments (70- to 80-percent ground cover) reduced runoff and erosion. Despite additional shrubs planted on one, the two plots receiving the gravel mulch treatments exhibited equally enhanced amounts of evapotranspiration.  相似文献   
185.
ABSTRACT: Techniques of optimization and simulation are merged to select the most efficient arrangement of components for regional water resources development and management. Application is made to the Elkhorn River Basin in Nebraska. The Basin extends over 7,000 square miles and includes 184 proposed reservoirs. Structure sizes, locations and operating policies are selected for optimal plans based on economic efficiency and regional development. Results indicate that substantial savings in time and costs over conventional planning techniques are effected. Agreement between model output and agency design values was noted.  相似文献   
186.
187.
Understanding social goals and objectives and incorporating them in water resources planning, management, education and engineering processes is the key to solving many current and emerging water resources problems. Water resources professionals must turn more of their attention to this issue. Various avenues are open for their involvement. They include lobbying, participating in government, education and research, publishing, establishing institutions, interacting with the public and analyzing existing systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号