首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1276篇
  免费   40篇
  国内免费   9篇
安全科学   77篇
废物处理   51篇
环保管理   331篇
综合类   115篇
基础理论   334篇
环境理论   2篇
污染及防治   281篇
评价与监测   82篇
社会与环境   44篇
灾害及防治   8篇
  2023年   9篇
  2022年   18篇
  2021年   15篇
  2020年   10篇
  2019年   20篇
  2018年   30篇
  2017年   25篇
  2016年   37篇
  2015年   36篇
  2014年   32篇
  2013年   103篇
  2012年   75篇
  2011年   71篇
  2010年   50篇
  2009年   69篇
  2008年   81篇
  2007年   71篇
  2006年   76篇
  2005年   44篇
  2004年   52篇
  2003年   56篇
  2002年   48篇
  2001年   15篇
  2000年   19篇
  1999年   17篇
  1998年   19篇
  1997年   15篇
  1996年   19篇
  1995年   18篇
  1994年   22篇
  1993年   14篇
  1992年   15篇
  1991年   9篇
  1990年   7篇
  1989年   11篇
  1988年   10篇
  1987年   8篇
  1986年   5篇
  1985年   9篇
  1984年   10篇
  1983年   11篇
  1982年   12篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   6篇
  1975年   2篇
  1973年   2篇
  1957年   2篇
排序方式: 共有1325条查询结果,搜索用时 15 毫秒
21.
Collaborative monitoring over broad scales and levels of ecological organization can inform conservation efforts necessary to address the contemporary biodiversity crisis. An important challenge to collaborative monitoring is motivating local engagement with enough buy-in from stakeholders while providing adequate top-down direction for scientific rigor, quality control, and coordination. Collaborative monitoring must reconcile this inherent tension between top-down control and bottom-up engagement. Highly mobile and cryptic taxa, such as bats, present a particularly acute challenge. Given their scale of movement, complex life histories, and rapidly expanding threats, understanding population trends of bats requires coordinated broad-scale collaborative monitoring. The North American Bat Monitoring Program (NABat) reconciles top-down, bottom-up tension with a hierarchical master sample survey design, integrated data analysis, dynamic data curation, regional monitoring hubs, and knowledge delivery through web-based infrastructure. NABat supports collaborative monitoring across spatial and organizational scales and the full annual lifecycle of bats.  相似文献   
22.
Cane rats (Thryonomyidae) are represented today by two species inhabiting sub-Saharan Africa. Their fossil record is predominately African, but includes several Miocene species from Arabia and continental Asia that represent dispersal events from Africa. For example, Paraulacodus indicus, known from the Miocene of Pakistan, is closely related to living Thryonomys. Here we describe a new thryonomyid, Protohummus dango, gen. et sp. nov., from the late Miocene Baynunah Formation of the United Arab Emirates. The new thryonomyid is less derived than “Thryonomysasakomae from the latest Miocene of Ethiopia and clarifies the origin of crown Thryonomys and the evolutionary transition from Paraulacodus. A phylogenetic analysis shows Protohummus dango to be morphologically intermediate between Paraulacodus spp. and extinct and living Thryonomys spp. The morphological grade and phylogenetic position of Protohummus dango further supports previous biochronological estimates of the age of the Baynunah Formation (ca. 6–8 Ma).  相似文献   
23.
Real-time monitoring and control of temperature in ultrasonic joining of battery tabs and coupons are important for the quality improvement and cost reduction of battery assembly. However, there have always been difficulties in accurate and real-time measurement of temperature by conventional sensors for practical implementation. In this study, an innovative method is developed to provide an enabling technology for the in situ transient temperature monitoring, which could provide reliable feedback signals for potential control of ultrasonic joining processes. Micro thin film thermocouples (TFTCs) were fabricated on thin silicon substrates, which were then inserted in the welding anvil as a permanent feature so that the sensors were always located about 100 μm directly under the welding spot during joining of multilayer Ni-coated Cu thin sheets for battery assembly. Good repeatability was demonstrated while a temperature rise of up to 650 °C was obtained due to the closeness of the sensors to the welding spot. The inserts with thin film sensors remained functional after welding experiments. This method has a great potential for in situ transient temperature monitoring, and thus the control of ultrasonic joining processes to realize a practical smart joining system.  相似文献   
24.
Plant biomass is known to increase in response to elevated atmospheric CO2 concentration (pCO2); however, no experiments have quantified the trajectory of crop fertilization across the full range of pCO2 levels estimated for the next 300 years. Here we quantify the above- and below-ground biomass response of Raphanus sativus (common radish) across eight pCO2 levels ranging from 348 to 1791 ppmv. We observed a large net biomass increase of 58% above ground and 279% below ground. A large part of the net increase (38% of the above-ground and 53% of the below-ground) represented biomass fertilization at the high levels of pCO2 (700–1791 ppmv) predicted if fossil fuel emissions continue unabated. The trajectory of below-ground fertilization in R. sativus greatly exceeded a trajectory based on extrapolation of previous experiments for plants grown at pCO2 < 800 ppmv. Based on the experimental parameters used to grow these plants, we hypothesize that these experiments represent the maximum CO2 fertilization that can be achieved for this plant growing under low light levels. If the below-ground biomass enhancement that we have quantified for R. sativus represents a generalized root-crop response that can be extrapolated to agricultural systems, below-ground fertilization under very high pCO2 levels could dramatically augment crop production in some of the poorest nations of the world, provided that water resources are sufficient and sustainable.  相似文献   
25.
Pan  Haozhi  Page  Jessica  Zhang  Le  Cong  Cong  Ferreira  Carla  Jonsson  Elisie  Näsström  Helena  Destouni  Georgia  Deal  Brian  Kalantari  Zahra 《Ambio》2020,49(7):1313-1327

Human-induced urban growth and sprawl have implications for greenhouse gas (GHG) emissions that may not be included in conventional GHG accounting methods. Improved understanding of this issue requires use of interactive, spatial-explicit social–ecological systems modeling. This paper develops a comprehensive approach to modeling GHG emissions from urban developments, considering Stockholm County, Sweden as a case study. GHG projections to 2040 with a social–ecological system model yield overall greater emissions than simple extrapolations in official climate action planning. The most pronounced difference in emissions (39% higher) from energy use single-residence buildings resulting from urban sprawl. And this difference is not accounted for in the simple extrapolations. Scenario results indicate that a zoning policy, restricting urban development in certain areas, can mitigate 72% of the total emission effects of the model-projected urban sprawl. The study outcomes include a decision support interface for communicating results and policy implications with policymakers.

  相似文献   
26.
Nitrate contamination of water sources is a concern where large amounts of nitrogen fertilizers are regularly applied to soils. Ingested nitrate from dietary sources and drinking water can be converted to nitrite and ultimately to N-nitroso compounds, many of which are known carcinogens. Epidemiologic studies of drinking water nitrate and cancer report mixed findings; a criticism is the use of nitrate concentrations from retrospective drinking water data to assign exposure levels. Residential point-of-use nitrate data are scarce; gaps in historical data for municipal supply finished water hamper exposure classification efforts. We used generalized linear regression models to estimate and compare historical raw water and finished water nitrate levels (1960s--1990s) in single source Iowa municipal supplies to determine whether raw water monitoring data could supplement finished water data to improve exposure assessment. Comparison of raw water and finished water samples (same sampling date) showed a significant difference in nitrate levels in municipalities using rivers; municipalities using other surface water or alluvial groundwater had no difference in nitrate levels. A regional aggregation of alluvial groundwater municipalities was constructed based on results from a previous study showing regional differences in nitrate contamination of private wells; results from this analysis were mixed, dependent upon region and decade. These analyses demonstrate using historical raw water nitrate monitoring data to supplement finished water data for exposure assessment is appropriate for individual Iowa municipal supplies using alluvial groundwater, lakes or reservoirs. Using alluvial raw water data on a regional basis is dependent on region and decade.  相似文献   
27.
Dredged material levees in coastal Louisiana are normally associated with pipeline canals or, more frequently, canals dredged through the wetlands to allow access to drilling locations for mineral extraction. The hydrologic impact on marshes behind the levee is of concern to coastal resource managers because of the potential impact on sediment transport and deposition, and the effect on estuarine organism access to valuable nursery habitat. This study examined the effects of gaps in dredged material levees, compared to continuous levees and natural channel banks, on these two aspects of marsh function. Field studies for sediment deposition were conducted biweekly for a year, and nekton samples were collected in spring and fall. Variation in nekton density among study arears and landscape types was great in part because of the inherent sampling gear issues and in part because of differences in characteristics among areas. Nekton densities were generally greater in natural compared to leveed and gapped landscapes. Differences in landscape type did not explain patterns in sediment deposition. The gaps examined appear to be too restrictive of marsh flooding to provide efficient movements of floodwaters onto the marsh during moderate flooding events. The “trapping” effect of the levees increases sediment deposition during extreme events. Gapping material levees may be an effective method of partially restoring upper marsh connection to nekton, but this method may work best in lower elevation marshes where nekton use is greater.  相似文献   
28.
Impacts of land cover on stream hydrology in the West Georgia Piedmont, USA   总被引:1,自引:0,他引:1  
The southeastern United States is experiencing rapid urban development. Consequently, Georgia's streams are experiencing hydrologic alterations from extensive development and from other land use activities such as livestock grazing and silviculture. A study was performed to assess stream hydrology within 18 watersheds ranging from 500 to 2500 ha. Study streams were first, second, or third order and hydrology was continuously monitored from 29 July 2003 to 23 September 2004 using InSitu pressure transducers. Rating curves between stream stage (i.e., water depth) and discharge were developed for each stream by correlating biweekly discharge measurements and stage data. Dependent variables were calculated from discharge data and placed into 4 categories: flow frequency (i.e., the number of times a predetermined discharge threshold is exceeded), flow magnitude (i.e., maximum and minimum flows), flow duration (i.e., the amount of time discharge was above or below a predetermined threshold), and flow predictability and flashiness. Fine resolution data (i.e., 15-min interval) were also compared to daily discharge data to determine if resolution affected how streams were classified hydrologically. Urban watersheds experienced flashy discharges during storm events, whereas pastoral and forested watersheds showed less flashy hydrographs. Also, in comparison to all other flow variables, flow frequency measures were most strongly correlated to land cover. Furthermore, the stream hydrology was explained similarly with both the 15-min and daily data resolutions.  相似文献   
29.
Field experiments were conducted to optimize the phytoextraction of weathered p,p'-DDE (p,p'-dichlorodiphenyldichloroethylene) by Cucurbita subspecies. The effects of two soil amendments, mycorrhizae or a biosurfactant, on p,p'-DDE accumulation was determined. Also, p,p'-DDE uptake was assessed during plant growth (12, 26, 38, and 62 d), and cultivars that accumulate weathered p,p'-DDE were intercropped with cultivars known not to have that ability. Cucurbita pepo L. ssp. pepo accumulated large amounts of the contaminant, having stem bioconcentration factors, amounts of p,p'-DDE translocated, and contaminant phytoextraction that were 14, 9.9, and 5.0 times greater than C. pepo L. ssp. ovifera (L.) D.S. Decker, respectively. During 62 d, the stem BCF (bioconcentration factor) for p,p'-DDE in subspecies pepo remained constant and the total amount of contaminant accumulated was correlated with plant biomass (r(2) = 0.86). For subspecies ovifera, the stem BCF was highest at 12 d (1.5) but decreased to 0.39 by 62 d, and p,p'-DDE removal was not correlated with plant biomass. Mycorrhizal inoculation increased p,p'-DDE accumulation by both subspecies by an average 4.4 times. For subspecies pepo, mycorrhizae increased the percentage of contaminant extracted from 0.72 to 2.1%. Biosurfactant amendment also enhanced contaminant accumulation by both subspecies, although treatment reduced subspecies ovifera biomass by 60%. The biosurfactant had no effect on the biomass of subspecies pepo, increased the average contaminant concentration by 3.6-fold, and doubled the overall amount of p,p'-DDE removed from the soil. Soil amendments that enhance the mobility of weathered persistent organic pollutants will significantly increase the amount of contaminant phytoextraction by Cucurbita pepo.  相似文献   
30.
Environmental fate of alkylphenols and alkylphenol ethoxylates--a review   总被引:31,自引:0,他引:31  
Alkylphenol ethoxylates (APEs) are widely used surfactants in domestic and industrial products, which are commonly found in wastewater discharges and in sewage treatment plant (STP) effluents. Degradation of APEs in wastewater treatment plants or in the environment generates more persistent shorter-chain APEs and alkylphenols (APs) such as nonylphenol (NP), octylphenol (OP) and AP mono- to triethoxylates (NPE1, NPE2 and NPE3). There is concern that APE metabolites (NP, OP, NPE1-3) can mimic natural hormones and that the levels present in the environment may be sufficient to disrupt endocrine function in wildlife and humans. The physicochemical properties of the APE metabolites (NP, NPE1-4, OP, OPE1-4), in particular the high K(ow) values, indicate that they will partition effectively into sediments following discharge from STPs. The aqueous solubility data for the APE metabolites indicate that the concentration in water combined with the high partition coefficients will provide a significant reservoir (load) in various environmental compartments. Data from studies conducted in many regions across the world have shown significant levels in samples of every environmental compartment examined. In the US, levels of NP in air ranged from 0.01 to 81 ng/m3, with seasonal trends observed. Concentrations of APE metabolites in treated wastewater effluents in the US ranged from < 0.1 to 369 microg/l, in Spain they were between 6 and 343 microg/l and concentrations up to 330 microg/l were found in the UK. Levels in sediments reflected the high partition coefficients with concentrations reported ranging from < 0.1 to 13,700 microg/kg for sediments in the US. Fish in the UK were found to contain up to 0.8 microg/kg NP in muscle tissue. APEs degraded faster in the water column than in sediment. Aerobic conditions facilitate easier further biotransformation of APE metabolites than anaerobic conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号